Cristian **Pira**

Superconductive Cavities for Accelerators and Haloscopes

Meeting SQMS Italia

October 15, 2021

Outline

Introduction

State of the art

Future activities

Why Superconductive Haloscopes?

How to find axions?

Copper Haloscopes (QUAX)

Q factor of Cu haloscopes limited by anomalous skin effect

From Cu to Superconducting Cavities

SC cavities reduce the wall dissipation by many orders of magnitude compared to NC cavity

Cu _{1.5 GHz}: R_s (300 K) ~10 mΩ, R_s (4 K)~1.3 mΩ Nb _{1.5 GHz}: R_s (4 K)~500 nΩ, R_s (2 K)~20 nΩ

SC Cavities performances

SC cavities performances (2)

σ

Geometry and **Coating technique dependent**

8

SC Cavities does not like Magnetic Field

Magnetic Hygiene is a fundamental part in cryostat design

Local shield for LCLS-II

S.K. Chandrasekaran, TTC workshop on flux trapping and magnetic field

RF performances are sensitive to Trapped flux (Earth magnetic field, cavity cooling)

Basics of SRF (3)

Depinning frequency 1.0 $f_o(B_o) = \frac{\omega_o(B_o)}{2\pi} = \frac{\rho_n \sqrt{B_o J_c(B_o)}}{\sqrt{\varphi_o B_{c2}}}$ Unsafe zone 0.8 0.6 P/P∞ f (mcs) fo**c** fo^(mcs) f (mcs) SAMPLE 0.4 MEAS. CALC. CALC. 3.9 7.0 2.2 •2 Safe zone △ PbIn—I.7°K Pb1n-1.7°K 5.1 12.0 3.8 X NbTa-4.2°K 15 49 15.6 SC effective $\rho_{\rm eff} = \rho_s + \rho_f$ resistivity 10-2 10² 10-1 103 104 101 102 1.0 f/fo If $f < f_0$ elastic vortex motion oscillating fluxon contribution Standard complex resistivity If $f > f_0$ resistive vortex motion $\rho_n \frac{B_o}{B_{o2}} \left(\frac{\omega^2}{\omega^2 + \omega^2} + i \frac{\omega \omega_o}{\omega^2 + \omega^2} \right)$ $\overline{\sigma_1 - i\sigma_2}$

Gittleman and Rosenblum: Phys Rev. Lett. 16, 734 (1966) Calatroni and Vaglio, IEEE Trans. Appl. Supercond. 27 (2017) 3500506

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

Zoo of Superconductors for Magnets

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

 10^{2}

SC materials choice

SC material choice

Material	Тс	Hc2	Note
Nb	9.2 K	0.4 T	Not suitable at high field
NbTi	~ 9.5 K	~ 14 T	Simple preparation
NbN	~ 17.1 K	~ 15 T	Uniformity is a challenge
Nb₃Sn	~ 18.3 K	~ 30 T	Preparation is a challenge
REBCO	~ 93 K	~ 100 T	Available in tapes

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

State of the art

Phys. Rev. D 99, 101101(R) Published 1 May 2019

Superconductive cavities for accelerators and haloscopes – Meeting SOMS Italia

will probe the axion existence in the next decade. Among

First SC haloscope

Collaboration between LNF and LNL

Cavity coated at LNL with 4 mm **NbTi layer Cu endcaps** to reduce vortex motion dissipation

$D_{\rm by} = D_{\rm out} - D_{\rm out} = 0.0000000000000000000000000000000000$	
PRVS RAV DIGG INTINTRIZUTGI	

ν (tm010)	9.1 GHz
G _{cyl}	6270 Ω
G _{cones}	482 Ω
Rs ^{Cu}	4.9 m Ω
Q ₀ Max	1.3×10 ⁶

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

3.1549E+07 1.5775E+07 0.0000E+00

60 (mm

INFN Surface Preparation

Half cavity after chemical polishing

- 1. Ultrasonic degreasing in Rodatel-30 soap
- 2. Ultrasonic in deionized water
- **3.** Electropolishing in H₃PO₄: Butanol at 3:2 volume ratio
- 4. Chemical polishing in SUBU-5 solution
- 5. Surface passivation with sulfamic acid
- 6. Ultrasonic, ethanol rinsing and drying

INFN NbTi Coating Set-up

4 inches NbTi planar magnetron

Half cavity on heatable sample holder

Cavity dimension limited by CF150 flange

INFN NbTi composition

A NbTi sheet with a composition of 40% in Ti has been used

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

INFN NbTi Coating Parameters

- T process = 450 °C
- $P_{base} < 9 * 10^{-9} \text{ mbar}$
- $P_{\text{process}} = 8 * 10^{-3} \text{ mbar}$
- |=1A
- T = 30 min
- Thickness ~ 3 4 μ m

Coated half cavity

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

First prototype of a biaxially textured $YBa_2Cu_3O_{7-x}$ microwave cavity in a high magnetic field for dark matter axion search Danho Ahn,^{2,1} Ohjoon Kwon,¹ Woohyun Chung,^{1,*} Wonjun Jang,^{3,†} Doyu Lee,^{1,‡} Jhinhwan Lee,⁴ Sung Woo Youn,¹ HeeSu Byun,¹ Dojun Youm,² and Yannis K. Semertzidis^{1, 2} ¹Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon 34051, Republic of Korea ²Department of Physics, Korea Advanced Institute of Science and Technology (KAIST). Daejeon 34141, Republic of Korea ³Center for Quantum Nanoscience, Institute for Basic Science, Seoul 33760, Republic of Korea ⁴Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang 37673, Republic of Korea (Dated: March 29, 2021) A high-quality factor microwave resonator in the presence of a strong magnetic field could have a wide range of applications, such as axion dark matter searches where the two aspects must coexist to enhance the experimental sensitivity. We introduce a polygon-shaped cavity design with bi-axially textured YBa₂Cu₃O_{7-x} superconducting tapes covering the entire inner wall. Using a 12-sided polygon cavity, we obtain substantially improved quality factors of the TM_{010} mode at 6.9 GHz at 4K with respect to a copper cavity and observe no considerable degradation in the presence of

magnetic fields up to 8 T. This corresponds to the first demonstration of practical applications of superconducting radio frequency technology for axion and other research areas requiring low loss in a strong magnetic field. We address the importance of the successful demonstration and discuss further improvements.

PACS numbers:

The advancement of the superconducting radiofrequency (SRF) technology allows an RF resonator to obtain an extremely high quality (Q) factor and to be used in a broad scope of applications [1]-[4]. However, the presence of an external magnetic field could limit scientific productivity in many areas where a strong external magnetic field is absolutely necessary. The examples include the beam screen design at the future circular col-

lider (FCC) [5,6] and high Q-factor cavities in axion dark

matter research. In particular, the axion dark matter de-

ditions in dark matter axion search, the Q factor can be expected to be larger, because the vortex pinning becomes stronger at lower temperature (100 mK) and in a magnetic field parallel to a REBCO film $\boxed{18+20}$. A high depinning frequency (>10 GHz) is also reasonable for a dark matter axion search which target frequency ranges up to 100 GHz.

Fabricating a 3-D resonant cavity structure with 2G REBCO film poses large technical challenges because of its biaxial texture. Directly forming a biaxially textured 26 March 2021

arXiv:2103.14515

0

2

3

Magnetic Field (T)

- 12 pieces polygon cavity
- Aluminum cavity (7 GHz)
- **REBCO** biaxially textured tapes (American Superconductor)

arXiv:2103.14515

8

Different cavity geometry (9 GHz)

4 October 2021 arXiv:2110.01296v1

27

In commercial REBCO tapes SC is embedded

arXiv:2110.01296v1

28

arXiv:2110.01296v1

- Ta buffer layer (to prevent Sn migration/film poisoning)
- **SS cavity** (T coating = 750 C)

arXiv:2110.01296v1

30

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

magnetic field B (T)

Fermilab Nb₃Sn

Tin Vapor Diffusion Very Mature Technique

‡Fermilab Nb₃Sn

State of the Art Recall

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

What's next?

Fermilab Optimized Cavity Geometry

Optimized geometry with solenoid field. Ratio is 3.5

Elongated cones with lower angle

FNAL design expected to have 4.5 times higher Q than INFN design for same frequency and same material parameters

Fermilab Optimized Cavity Geometry

Designed to have surface currents highly parallel to applied field: minimize JxB term in Lorentz force

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

INFN NbTi Cavity at 3.9 GHz for FNAL

Fabrication at LNF NbTi Sputtering at LNL Measurements at FNAL at 4K in 6T magnet

ModeTM010Frequency3.965 GHzExpected quality factor
(B=0, NbTi walls, Cu endcaps)1.64×10⁶

Ansys Hfss simulations (S.Tocci, LNF)

Rs^{Cu}=2.8 mOhm, in Ansys obtained by using a conductivity of 2e+9 S/m

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

SAMARA INFN CSN5 new experiment

Superconducting Alternative Materials for Accelerating cavities and haloscope Resonators for Axions

Durata proposta: 3 anni Area di ricerca: Acceleratori di particelle Responsabile nazionale: Pira Cristian (LNL)

Established a **new collaboration** with **Roma Tre** (Enrico Silva) and **PoliTO** (Gianluca Ghigo)

Cristian Pira

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

Innovation: Nb₃Sn on Cu

High thermal conductivity substrate is preferred in SRF

High performance of $Nb_3Sn @ 4.2 K$

Potential cooling by cryocooler

(proof of concepts already realized at Jlab on Nb₃Sn-**Nb**-Cu cavities)

New industrial applications for SRF accelerators

Innovation: Nb₃Sn on Cu

Sputtering is the most promising technique

Advantages:

Challenges:

- Versatile technique
- LNL experience
- Good stoichiometry already at 600 °C
- Small grain film → more pinning
 → best in high magnetic field

Nb₃Sn Challenging: Phase Diagram

Nb₃Sn Challenging: Stoichiometry

Innovation: Nb₃Sn on Cu

Sputtering is the most promising technique

Advantages:

- Versatile technique
- LNL experience
- Good stoichiometry already at 600 °C
- Small grain film → more pinning
 → best in high magnetic field

Challenges:

- Complex Phase Diagram
- Stoichiometry is critical
- Possible poisoning from Cu substrate
- Complex scaling to accelerating cavity
 Not a problem with haloscopes!

SAMARA will develop and study Nb₃Sn for:

 $\begin{array}{c}
 f_{p} \\
 -\rho_{vm,1} \\
 -\rho_{vm,2} \\
 10^{-1} 10^{0} 10^{1} 10^{2} \\
 fif_{p} \\
 fif_{p} \\
\end{array}$

MODELLIZATION OF VORTEX DYNAMICS IN EXTREME CONDITIONS

HALOSCOPE FOR AXION SEARCH

From old coating system to new one

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

From old coating system to new one

Commercial 4 " magnetron source

In house 4 " magnetron source

600 °C Sample holder

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

Final remarks

- First results with **SC haloscopes** have shown the feasibility of **RF operation in strong magnetic field**
- Necessary more R&D

- Modelling of vortex motion will help the R&D
- We are only at the **beginning...**

ALPI SC cavities performance evolution

Pb on Cu QWR (1988)

Nb on Cu QWR (1993)

Q and E_{acc} improved of one order of magnitude in 5 years

Superconductive cavities for accelerators and haloscopes – Meeting SQMS Italia

Thank you!

