
Parallelism beyond the node

Felice Pantaleo

CERN Experimental Physics Department

felice@cern.ch

2

Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best

teaching standards!

2

https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing

3

Supercomputers

Sometimes:
● You are willing to sacrifice some efficiency for a faster

solution
● After a certain amount of time, your solution becomes

useless (e.g. climatology)
● The amount of data and parallelism does not fit in the

memory of a single machine (cosmology, oil reservoir)
● It is too dangerous or too expensive to run an experiment,

and simulating it requires huge amount of resources
(weapons simulation for defense, fault simulations)

3

4

Efficiency loss? What are you
talking about?
● The latency of the DRAM can be measured in

tens of nanoseconds
● Sending a byte to a directly connected

computer can take 2-3 orders of magnitude
longer than DRAM, depending on the
interconnect technology

● If you have to use Message Passing, try hard to
minimize communication

MPI Basics

6

MPI

● MPI is a standard : http://www.mpi-
forum.org/
– Defines API for C, C++, Fortran77, Fortran90

● library with diverse functionalities:
– Communication primitives (blocking, non-blocking)
– Parallel I/O
– RMA
– neighborhood collectives

7

MPI

● A single program is executed with multiple
instances, processes, on the same or different
nodes

● These instances communicate via library calls
for:
– initialize, finalize, manage working groups/identifiers
– direct point-to-point communication between two

processes
– collective communication

8

Processes

● Each process running its own instance of the
program has access exclusively to its own data

● Two processes communicate by exchanging
messages

● Processes have identifiers
● Function calls are used to send data from one

process to another

9

Processes

Process 1

a=5

Send(a,2)

Process 2

10

Processes

Process 1

a=5

Send(a,2)

Process 2

Recv(b,1)

b++

11

Processes

Process 1

a=5

Send(a,2)

Process 2

Recv(b,1)

b++

b is now 6

12

Single Program on Multiple Data

Process 1

if pid==1:

 a=5

 Send(a,2)

else:

 Recv(b,1)

 b++

Process 2

if pid==1:

 a=5

 Send(a,2)

else:

 Recv(b,1)

 b++

13

SPMD

● Every process runs the same program
● Each process has a unique identifier and runs

the version of the program with that particular
identifier

● Private data
● You usually run one process per socket/core

depending on the parallelization strategy

14

Communicators

● Communicators provides a separate communication
space.

● It is possible to treat a subset of processes as a
communication universe: MPI_COMM_WORD

● Two types of communicators:
– Intra-communicator : a collection of processes that can

send messages to each other and engage in collective
communication operations.

– Inter-communicator: are used for sending messages between
processes belonging to disjoint intra-communicators.

15

Hello World
#include <mpi.h>

#include <iostream>

int main(int argc, char** argv) {

 MPI_Init(nullptr, nullptr);

 // Get the number of processes

 int world_size;

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process

 int rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // Get the name of the processor

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 int name_len;

 MPI_Get_processor_name(processor_name, &name_len);

 std::cout << "Hello world from processor " << processor_name << " rank " << rank <<
" of " << world_size << std::endl;

 MPI_Finalize();

}

16

Hello World
~ mpic++ mpi_hello_world.cpp -o mpi_hello_world

~ mpirun -np 16 ./mpi_hello_world

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 15 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 0 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 6 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 1 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 4 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 5 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 7 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 10 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 11 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 12 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 13 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 14 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 2 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 3 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 8 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 9 of 16

17

Exercise MPI Hello World

● Try it

Point-to-Point Communication

19

Messages

● In general, in order to be able to communicate
using messages you need to fill in a header and
a payload

● In MPI the header includes:
– the id of the sender and receiver
– the tag: the "subject" of the message
– the datatype of the content
– the number of elements of that datatype
– the position of the first element to send/receive

20

Messages

● If the sender waits for the message to be
received, the communication is synchronous

● An asynchronous send returns immediately
after the message has been sent

● Receiving is usually synchronous
● Messages have to match, otherwise deadlocks

can occur

21

Data types
MPI datatype C equivalent

MPI_SHORT short int

MPI_INT int

MPI_LONG long int

MPI_LONG_LONG long long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE char

22

System buffer
● A send operation occurs 5 seconds before the receive is ready - where

is the message while the receive is pending?

● Opaque to the programmer and managed entirely by the MPI library

● Able to exist on the sending side, the receiving side, or both

● Allows asynchronous operations

23

Blocking and non blocking
communication

x = 0

MPI_Ssend(&x...)

..other work to do..

x = 0

MPI_ISend(&x..., req)

..other work to do..

MPI_Wait(...,req)

What's the difference?

24

Send a message! Example
 #include "mpi.h"

 #include <stdio.h>

 int main(int argc, char *argv[]) {

 int numtasks, rank, dest, source, rc, count, tag=1;

 char inmsg, outmsg='x';

 MPI_Status Stat; // required variable for receive routines

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

25

Send a message! Example

// rank 0 sends to rank 1 and waits to receive a return message

 if (rank == 0) {

 dest = 1;

 MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 }

// rank 1 waits for rank 0 message then returns a message

 else if (rank == 1) {

 source = 0;

 MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

 }

 MPI_Finalize();

 }

26

Your turn now: Ping Pong

● Modify the previous example to send and receive a message:
– rank 0 sends a message to rank 1.
– once received, rank 1 sends the same message to rank 0

● Measure time between a send and receive (ping)
● Try to run it on many iterations such that the total time is

between 1s and 10s
● Measure bandwidth and investigate how it changes with a

varying message size
● time can be measured with:
double MPI_Wtime()

27

Blocking ping pong exercise
 #include "mpi.h"

 #include <iostream>

 Int main() {

 int numtasks, rank, dest, source, rc, count, tag=1;

 char inmsg, outmsg='x';

 MPI_Status Stat; // required variable for receive routines

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // task 0 sends to task 1 and waits to receive a return message

 if (rank == 0) {

 dest = 1;

 source = 1;

 MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

 }

28

Blocking ping pong exercise

 // task 1 waits for task 0 message then returns a message

 else if (rank == 1) {

 dest = 0;

 source = 0;

 MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

 MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 }

 // query receive Stat variable and print message details

 MPI_Get_count(&Stat, MPI_CHAR, &count);

 std::cout <<"Rank “ << rank << “ Received “<< count << “ char(s) from
rank “ << Stat.MPI_SOURCE << “ with tag " << Stat.MPI_TAG << std::endl;

 MPI_Finalize();

 }

29

The blocking ring exercise

● Write an MPI program in which each process
sends its rankId to its neighbors rankId+1 and
rankId-1

● Close the ring by making the last rankId
communicate with the rankId=0

● Measure the time for 1000 iterations and a
variable number of processes

30

Non-Blocking ring exercise
 #include "mpi.h"

 int main() {

 int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;

 constexpr int nRequests = 4;

 MPI_Request reqs[nRequests]; // required variable for non-blocking calls

 MPI_Status stats[nRequests]; // required variable for Waitall routine

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // determine left and right neighbors

 prev = rank-1;

 next = rank+1;

 if (rank == 0) prev = numtasks - 1;

 if (rank == (numtasks - 1)) next = 0;

31

Non-Blocking ring exercise

 // post non-blocking receives and sends for neighbors

 MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);

 MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

 MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);

 MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

 // do some work while sends/receives progress in background

 // wait for all non-blocking operations to complete

 // MPI_Waitall (count,&array_of_requests,&array_of_statuses)

 MPI_Waitall(nRequests, reqs, stats);

 // continue - do more work

 MPI_Finalize();

 }

32

The non-blocking ring exercise

● Modify the previous program in order to use
non-blocking communication

● Measure the time for 1000 iterations and a
variable number of processes

● Do you notice any speed-up?

33

Pi

We know that:

– The integral can be
approximated as the
sum of the rectangles:

34

Numerical integration

constexpr int num_steps = 1<<20;

double pi = 0.;

constexpr double step = 1.0/(double) num_steps;

double sum = 0.;

for (int i=0; i< num_steps; i++){

 auto x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

std::cout << "result: " << std::setprecision (15) <<
pi << std::endl;

●

35

Numerical integration

● Modify your Hello World program so that each process
independently computes the value of π and prints it to the
screen.

● Choose a number of steps per process and try to parallelize
it using MPI

● Every process sends its partial result to rank 0
● rank 0 executes the final sum
● Make sure everything works even if the number of steps is

not multiple of the number of processes
● Compare timing with same number of threads as processes

in tbb/std::threads

36

Probe before receiving

If you don't want to allocate the maximum possible
amount of memory for the receiving buffer you can use
MPI_Probe
MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status* status)

It will ask for the properties of the incoming message without
receiving it:
MPI_Probe(0, 0, MPI_COMM_WORLD, &status);

MPI_Get_count(&status, MPI_INT, &number_amount);

std::vector<int> number_buf (number_amount);

MPI_Recv(number_buf.data(), number_amount, MPI_INT, 0, 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Collective Communication

38

Collective
communication/synchronization
● A message can be sent to/received from a group of

processes
– Broadcast, scatter, gather, reduce

● A group of processes can synchronize
– Achieved by means of barriers
– A process in the group has to wait for all the other processes in

the group before it can start executing the next line of code
– Usually needed for timing, not for correctness

● Use collective communication when possible
– they are implemented more efficiently than the sum of their

point-to-point equivalent calls

39

Barrier

MPI_Barrier(MPI_Comm communicator)

40

Barrier

MPI_Barrier(MPI_Comm communicator)

41

Barrier

MPI_Barrier(MPI_Comm communicator)

42

Barrier

MPI_Barrier(MPI_Comm communicator)

43

Barrier

MPI_Barrier(MPI_Comm communicator)

44

Collective communication

45

Collective communication

MPI_Bcast(
 void* data,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm communicator)

MPI_Scatter(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

MPI_Gather(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

MPI_Reduce(
 void* send_data,
 void* recv_data,
 int count,
 MPI_Datatype datatype,
 MPI_Op op,
 int root,
 MPI_Comm communicator)

46

Reduce operations
● MPI_MAX - Returns the maximum element.

● MPI_MIN - Returns the minimum element.

● MPI_SUM - Sums the elements.

● MPI_PROD - Multiplies all elements.

● MPI_LAND - Performs a logical and across the elements.

● MPI_LOR - Performs a logical or across the elements.

● MPI_BAND - Performs a bitwise and across the bits of the elements.

● MPI_BOR - Performs a bitwise or across the bits of the elements.

● MPI_MAXLOC - Returns the maximum value and the rank of the process
that owns it.

● MPI_MINLOC - Returns the minimum value and the rank of the process
that owns it.

47

Exercise Pi

● Modify the numerical integration exercise to use
the collective reduction

48

Exercise Game of Life
● Cellular Automaton
● Any live cell with fewer than

two live neighbours dies
● Any live cell with more than

three live neighbours dies
● Any live cell with two or

three live neighbours lives,
unchanged, to the next
generation.

● Any dead cell with exactly
three live neighbours will
come to life.

● Borders should be treated as
portals

49

Final MPI exercise - Game of Life

● p processors
● board NxM booleans (x and o)
● initially the master sends a piece of the board

to each processor
● each processor computes its CA and exchanges

borders information with neighboring processors
● at each m steps, the master gathers the entire

board and prints it on screen (x and o)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

