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Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best 

teaching standards!
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https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing
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Supercomputers

Sometimes:
● You are willing to sacrifice some efficiency for a faster 

solution
● After a certain amount of time, your solution becomes 

useless (e.g. climatology)
● The amount of data and parallelism does not fit in the 

memory of a single machine (cosmology, oil reservoir)
● It is too dangerous or too expensive to run an experiment, 

and simulating it requires huge amount of resources 
(weapons simulation for defense, fault simulations)
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Efficiency loss? What are you 
talking about?
● The latency of the DRAM can be measured in 

tens of nanoseconds
● Sending a byte to a directly connected 

computer can take 2-3 orders of magnitude 
longer than DRAM, depending on the 
interconnect technology

● If you have to use Message Passing, try hard to 
minimize communication



MPI Basics
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MPI

● MPI is a standard : http://www.mpi-
forum.org/
– Defines API for C, C++, Fortran77, Fortran90

● library with diverse functionalities:
– Communication primitives (blocking, non-blocking)
– Parallel I/O
– RMA
– neighborhood collectives
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MPI

● A single program is executed with multiple 
instances, processes, on the same or different 
nodes

● These instances communicate via library calls 
for:
– initialize, finalize, manage working groups/identifiers
– direct point-to-point communication between two 

processes
– collective communication 
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Processes

● Each process running its own instance of the 
program has access  exclusively to its own data 

● Two processes communicate by exchanging 
messages

● Processes have identifiers
● Function calls are used to send data from one 

process to another
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Processes

Process 1

a=5

Send(a,2)

Process 2
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Processes

Process 1

a=5

Send(a,2)

Process 2

Recv(b,1)

b++
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Processes

Process 1

a=5

Send(a,2)

Process 2

Recv(b,1)

b++

b is now 6
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Single Program on Multiple Data

Process 1

if pid==1:

  a=5

  Send(a,2)

else:

  Recv(b,1)

  b++

Process 2

if pid==1:

  a=5

  Send(a,2)

else:

  Recv(b,1)

  b++
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SPMD

● Every process runs the same program
● Each process has a unique identifier and runs 

the version of the program with that particular 
identifier

● Private data
● You usually run one process per socket/core 

depending on the parallelization strategy
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Communicators

● Communicators provides a separate communication 
space. 

● It is possible to treat a subset of processes as a 
communication universe: MPI_COMM_WORD

● Two types of communicators:
– Intra-communicator : a collection of processes that can 

send messages to each other and engage in collective 
communication operations.

– Inter-communicator: are used for sending messages between 
processes belonging to disjoint intra-communicators. 
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Hello World
#include <mpi.h>

#include <iostream>

int main(int argc, char** argv) {

  MPI_Init(nullptr, nullptr);

  // Get the number of processes

  int world_size;

  MPI_Comm_size(MPI_COMM_WORLD, &world_size);

  // Get the rank of the process

  int rank;

  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  // Get the name of the processor

  char processor_name[MPI_MAX_PROCESSOR_NAME];

  int name_len;

  MPI_Get_processor_name(processor_name, &name_len);

  std::cout << "Hello world from processor " << processor_name << " rank " << rank << 
" of " << world_size << std::endl;

  MPI_Finalize();

}
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Hello World
~ mpic++ mpi_hello_world.cpp -o mpi_hello_world

~ mpirun -np 16 ./mpi_hello_world

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 15 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 0 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 6 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 1 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 4 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 5 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 7 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 10 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 11 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 12 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 13 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 14 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 2 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 3 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 8 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 9 of 16
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Exercise MPI Hello World

● Try it



Point-to-Point Communication
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Messages

● In general, in order to be able to communicate 
using messages you need to fill in a header and 
a payload

● In MPI the header includes:
– the id of the sender and receiver
– the tag: the "subject" of the message
– the datatype of the content
– the number of elements of that datatype 
– the position of the first element to send/receive
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Messages

● If the sender waits for the message to be 
received, the communication is synchronous

● An asynchronous send returns immediately 
after the message has been sent

● Receiving is usually synchronous
● Messages have to match, otherwise deadlocks 

can occur
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Data types
MPI datatype C equivalent

MPI_SHORT short int

MPI_INT int

MPI_LONG long int

MPI_LONG_LONG long long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE char
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System buffer 
● A send operation occurs 5 seconds before the receive is ready - where 

is the message while the receive is pending?

● Opaque to the programmer and managed entirely by the MPI library

● Able to exist on the sending side, the receiving side, or both

● Allows asynchronous operations
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Blocking and non blocking 
communication

x = 0

MPI_Ssend(&x...)

..other work to do..

x = 0

MPI_ISend(&x..., req)

..other work to do..

MPI_Wait(...,req)

What's the difference?
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Send a message! Example
   #include "mpi.h"

   #include <stdio.h>

   int main(int argc, char *argv[])  {

   int numtasks, rank, dest, source, rc, count, tag=1;  

   char inmsg, outmsg='x';

   MPI_Status Stat;   // required variable for receive routines

   MPI_Init(&argc,&argv);

   MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

   MPI_Comm_rank(MPI_COMM_WORLD, &rank);

   



25

Send a message! Example

// rank 0 sends to rank 1 and waits to receive a return message

   if (rank == 0) {

     dest = 1;

     MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

     }    

// rank 1 waits for rank 0 message then returns a message

   else if (rank == 1) {

     source = 0;

     MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

     }

   MPI_Finalize();

   }
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Your turn now: Ping Pong

● Modify the previous example to send and receive a message:
– rank 0 sends a message to rank 1.
– once received, rank 1 sends the same message to rank 0 

● Measure time between a send and receive (ping)
● Try to run it on many iterations such that the total time is 

between 1s and 10s
● Measure bandwidth and investigate how it changes with a 

varying message size
● time can be measured with: 
double MPI_Wtime( )
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Blocking ping pong exercise
   #include "mpi.h"

   #include <iostream>

   Int main()  {

   int numtasks, rank, dest, source, rc, count, tag=1;  

   char inmsg, outmsg='x';

   MPI_Status Stat;   // required variable for receive routines

   MPI_Init(&argc,&argv);

   MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

   MPI_Comm_rank(MPI_COMM_WORLD, &rank);

   // task 0 sends to task 1 and waits to receive a return message

   if (rank == 0) {

     dest = 1;

     source = 1;

     MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

     MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

     } 
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Blocking ping pong exercise

   // task 1 waits for task 0 message then returns a message

   else if (rank == 1) {

     dest = 0;

     source = 0;

     MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

     MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

     }

   // query receive Stat variable and print message details

   MPI_Get_count(&Stat, MPI_CHAR, &count);

   std::cout <<"Rank “ << rank << “ Received “<< count << “ char(s) from 
rank “ << Stat.MPI_SOURCE << “ with tag " << Stat.MPI_TAG << std::endl;

   MPI_Finalize();

   }
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The blocking ring exercise

● Write an MPI program in which each process 
sends its rankId to its neighbors rankId+1 and 
rankId-1

●  Close the ring by making the last rankId 
communicate with the rankId=0

● Measure the time for 1000 iterations and a 
variable number of processes
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Non-Blocking ring exercise
   #include "mpi.h"

   int main()  {

   int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;

   constexpr int nRequests = 4;

   MPI_Request reqs[nRequests]; // required variable for non-blocking calls

   MPI_Status stats[nRequests];   // required variable for Waitall routine

   MPI_Init(&argc,&argv);

   MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

   MPI_Comm_rank(MPI_COMM_WORLD, &rank);

   

   // determine left and right neighbors

   prev = rank-1;

   next = rank+1;

   if (rank == 0)  prev = numtasks - 1;

   if (rank == (numtasks - 1))  next = 0;
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Non-Blocking ring exercise

   // post non-blocking receives and sends for neighbors

   MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);

   MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

   MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);

   MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

  

      // do some work while sends/receives progress in background

   // wait for all non-blocking operations to complete

   // MPI_Waitall (count,&array_of_requests,&array_of_statuses) 

   MPI_Waitall(nRequests, reqs, stats);

  

      // continue - do more work

   MPI_Finalize();

   }
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The non-blocking ring exercise

● Modify the previous program in order to use 
non-blocking communication

● Measure the time for 1000 iterations and a 
variable number of processes

● Do you notice any speed-up?
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Pi

We know that:

– The integral can be 
approximated as the 
sum of the rectangles:



34

Numerical integration

constexpr int num_steps = 1<<20;

double pi = 0.;

constexpr double step = 1.0/(double) num_steps;

double sum = 0.;

for (int i=0; i< num_steps; i++){

  auto x = (i+0.5)*step;

  sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

std::cout << "result: " <<  std::setprecision (15) << 
pi << std::endl;

●
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Numerical integration

● Modify your Hello World program so that each process 
independently computes the value of π and prints it to the 
screen.

● Choose a number of steps per process and try to parallelize 
it using MPI 

● Every process sends its partial result to rank 0
● rank 0 executes the final sum
● Make sure everything works even if the number of steps is 

not multiple of the number of processes
● Compare timing with same number of threads as processes 

in tbb/std::threads
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Probe before receiving

If you don't want to allocate the maximum possible 
amount of memory for the receiving buffer you can use 
MPI_Probe
MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status* status)

It will ask for the properties of the incoming message without 
receiving it:
MPI_Probe(0, 0, MPI_COMM_WORLD, &status);

MPI_Get_count(&status, MPI_INT, &number_amount);

std::vector<int> number_buf (number_amount);

MPI_Recv(number_buf.data(), number_amount, MPI_INT, 0, 0,

             MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 



Collective Communication
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Collective 
communication/synchronization
● A message can be sent to/received from a group of 

processes
– Broadcast, scatter, gather, reduce

● A group of processes can synchronize
– Achieved by means of barriers
– A process in the group has to wait for all the other processes in 

the group before it can start executing the next line of code
– Usually needed for timing, not for correctness

● Use collective communication when possible 
– they are implemented more efficiently than the sum of their 

point-to-point equivalent calls
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Barrier

MPI_Barrier(MPI_Comm communicator)
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Barrier

MPI_Barrier(MPI_Comm communicator)
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Barrier

MPI_Barrier(MPI_Comm communicator)
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Barrier

MPI_Barrier(MPI_Comm communicator)
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Barrier

MPI_Barrier(MPI_Comm communicator)
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Collective communication
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Collective communication

MPI_Bcast(
    void* data,
    int count,
    MPI_Datatype datatype,
    int root,
    MPI_Comm communicator)

MPI_Scatter(
    void* send_data,
    int send_count,
    MPI_Datatype send_datatype,
    void* recv_data,
    int recv_count,
    MPI_Datatype recv_datatype,
    int root,
    MPI_Comm communicator)

MPI_Gather(
    void* send_data,
    int send_count,
    MPI_Datatype send_datatype,
    void* recv_data,
    int recv_count,
    MPI_Datatype recv_datatype,
    int root,
    MPI_Comm communicator)

MPI_Reduce(
    void* send_data,
    void* recv_data,
    int count,
    MPI_Datatype datatype,
    MPI_Op op,
    int root,
    MPI_Comm communicator)
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Reduce operations
● MPI_MAX - Returns the maximum element.

● MPI_MIN - Returns the minimum element.

● MPI_SUM - Sums the elements.

● MPI_PROD - Multiplies all elements.

● MPI_LAND - Performs a logical and across the elements.

● MPI_LOR - Performs a logical or across the elements.

● MPI_BAND - Performs a bitwise and across the bits of the elements.

● MPI_BOR - Performs a bitwise or across the bits of the elements.

● MPI_MAXLOC - Returns the maximum value and the rank of the process 
that owns it.

● MPI_MINLOC - Returns the minimum value and the rank of the process 
that owns it.
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Exercise Pi

● Modify the numerical integration exercise to use 
the collective reduction
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Exercise Game of Life
● Cellular Automaton
● Any live cell with fewer than 

two live neighbours dies
● Any live cell with more than 

three live neighbours dies
● Any live cell with two or 

three live neighbours lives, 
unchanged, to the next 
generation.

● Any dead cell with exactly 
three live neighbours will 
come to life.

● Borders should be treated as 
portals
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Final MPI exercise - Game of Life

● p processors
● board NxM booleans ( x and o)
● initially the master sends a piece of the board 

to each processor
● each processor computes its CA and exchanges 

borders information with neighboring processors
● at each m steps, the master gathers the entire 

board and prints it on screen (x and o) 
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