
Expressing parallelism in C++

Felice Pantaleo

CERN Experimental Physics Department

felice@cern.ch

2

Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best

teaching standards!

2

https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing

3

You will learn...

● Threads and Concurrency
● std::threads
● locks/mutual execution
● atomics
● Parallel algorithms
● Intel Threading Building Blocks
● Parallel execution with tbb
● Tasks parallelism

3

4

Threads

● A thread is an execution context, a set of register
values

● Defines the instructions to be executed and their order
● A CPU core fetches this execution context and starts

running the instructions: the thread is running
● When the CPU needs to execute another thread, it

switches the context , i.e. saving the previous context
and loading the new one
– Context switching is expensive
– Avoid threads jumping from a CPU core to another

4

5

Threads enable concurrency
● Concurrency does not imply parallelism
● If your program contains independent parts, they are the

perfect candidates for running concurrently
● Restaurant for dinner:

– cooking food and preparing the tables are independent tasks and
they can be performed by different workers to gain a speed-up

● A & B are concurrent wrt to each other and are also parallel
wrt to C, D, E,F

5

6

Critical Path

● T = 1 is the time to compute a
red box

● Serial Time = 8
● Span = 6
● Maximum speed-up = 8/6 ~ 1.33
● Speed up with 2 cores = 1.33
● Speed up with 100 cores = 1.33

7

std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

}

compile with

g++ std_threads.cpp -pthread -o std_threads

8

std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

}

Define a fuction that prints Hello world

void f(int i){

 std::cout << “Hello world from thread” << i <<
std::endl;

}

9

std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

 auto f = [](int i){

 std::cout << "hello world from thread " << i << std::endl;

 };

//Construct a thread which runs the function f

 std::thread t0(f,0);

//and then destroy it by joining it

 t0.join();

}

10

Congratulations!

● You have just written your first concurrent
program

● Let's add some more threads and look at the
output

11

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

 auto f = [](int i){

 std::cout << "hello world from thread " << i << std::endl;

 };

//Construct a thread which runs the function f

 std::thread t0(f,0); std::thread t1(f,1); std::thread t2(f,2);

//and then destroy it by joining it with the main thread

 t0.join(); t1.join(); t2.join();

}

12

Fork-join

● The construction of a thread is asynchronous, fork
● Threads execute independently
● join is the synchronization point with the main thread

13

Before we move on, measuring time
#include <chrono>

...

auto start = std::chrono::steady_clock::now();

 f(i);

auto stop = std::chrono::steady_clock::now();

std::chrono::duration<double> dur= stop - start;

std::cout << dur.count() << " seconds" << std::endl;

f() is the function that you want to measure

Be careful, asynchronous functions return immediately: remember
to synchronize before stopping the timer.

14

Exercise 1

● You want to sum the elements of a vector in
parallel using 4 threads

● Accumulate the sum in the variable sum
● Let's start by creating a thread
● Brainstorming time!

15

Data Race

A race condition occurs when multiple tasks
read from and write to the same memory
without proper synchronization.

● The “race” may finish correctly sometimes and
therefore complete without errors, and at other
times it may finish incorrectly.

● If a data race occurs, the behavior of the
program is undefined.

16

std::mutex

● Avoiding that multiple threads access a shared
variable

● Use it together with a scoped lock:
#include <mutex>

std::mutex myMutex;

...

{

 std::lock_guard<std::mutex> myLock(myMutex);

 //critical section begins here

 std::cout << "Only one thread at a time" << std::endl;

} // ends at the end of the scope of myLock

17

Some measurements
● Now you're ready to increase the number of threads!
● Time vs number of threads?
● Effect of privatization?

● Hint for creating multiple threads:

auto n = std::thread::hardware_concurrency();

std::vector<std::thread> v;

for (auto i = 0; i < n; ++i) {

 v.emplace_back(f,i);

}

for (auto& t : v) {

 t.join();

}

18

Exercise 2 - Numerical Integration

We know that:

– The integral can be
approximated as the
sum of the rectangles:

19

Numerical integration
constexpr int num_steps = 1<<20;

double pi = 0.;

constexpr double step = 1.0/(double) num_steps;

double sum = 0.;

for (int i=0; i< num_steps; i++){

 auto x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

std::cout << "result: " << std::setprecision (15) << pi << std::endl;

●Try to parallelize it
●Measure time vs number of threads, vs number of steps, play with parameters
and check precision

●Try privatization
●What happens if one thread runs over more steps than the others? Why?

Memory access patterns: cached

Effective parallel programming
requires that we have a sense of the
importance of locality.

For optimal CPU cache utilization,
the thread a should process element i
and i+1

• stride=1

20

CPU

00
0
1

31
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0

CPU Thread 0 CPU Thread 1 CPU Thread 2 CPU Thread 3

21

False Sharing

● Suppose that:
– a cache line is 64bytes
– two threads (x and y) run on processors that share their cache
– we have two arrays int A[500], B[500]
– the end of A and the beginning of B are in the same cache line
– thread x modifies A[499], and loads the corresponding cache-line

in cache
– thread y modifies B[0]

● The processor needs to flush the cache lines, reloading the
cache for thread x and invalidating the cache for thread y

● Solution: align/padding to cache-line size

22

Exercise 3 - π with Monte Carlo

● The area of the circle is π
● The area of the square is 4
● Generate N random x and

y between -1 and 1:
– if r < 1: the point is inside

the circle and increase Nin

– The ratio between Nin and N
converges to the ratio
between the areas

23

std::atomic
● Atomic types:

– encapsulate a value whose access is guaranteed to not cause data races
– other threads will see the state of the system before the operation

started or after it finished, but cannot see any intermediate state
– can be used to synchronize memory accesses among different threads
– at the low level, atomic operations are special hardware instructions
– (hardware guarantees atomicity)

● The primary std::atomic template may be instantiated with any
TriviallyCopyable type T

● Common architectures have atomic fetch-and-add instructions for integers
#include <atomic>

std::atomic<int> x = 0; int a = x.fetch_add(42);

● reads from a shared variable, adds 42 to it, and writes the result back: all in one
indivisible step

24

Trivially Copyable

● Trivially copyable
● The primary std::atomic template may be instantiated

with any TriviallyCopyable type T
– Continuous chunk of memory
– Copying the object means copying all bits (memcpy)
– No virtual functions, noexcept constructor

std::atomic<int> i; // OK

std::atomic<double> x; // OK

struct S { long x; long y; };

std::atomic<S> s; // OK!

25

std::atomic<T>

● read and write operations are always atomic
● std::atomic<T> provides operator overloads only for atomic operations

(incorrect code does not compile)
std::atomic<int> x{0}

++x;

x++;

x += 1;

x |= 2;

x *= 2; //this is not atomic and will not compile

int y = x * 2; // atomic read of x

x = y + 1; // atomic write of x

x = x + 1; // atomic read and then atomic write

x = x * 2; // atomic read and then atomic write

int z = x.exchange(y); // Atomically: z = x; x = y;

26

Compare-and-swap (CAS)
bool success = x.compare_exchange_weak(y, z);

uint32_t fetch_multiply(std::atomic<uint32_t>& shared, uint32_t multiplier)

{

 uint32_t oldValue = shared.load();

 while (!shared.compare_exchange_weak(oldValue, oldValue * multiplier)) { }

 return oldValue;

}

27

28

Expressing Parallelism with
Intel Threading Building Blocks

30

Why TBB?

● Intel OneAPI Threading Building Blocks is a
library which allows to express parallelism on
CPUs in a C++ program

● Parallelizing for loops can be tedious with
std::threads

● One wants to achieve scalable parallelism, easily
● To use the TBB library, you specify tasks, not

threads, and let the library map tasks onto
threads in an efficient manner

31

Why TBB?

● Direct programming with threads forces you to do
the work to efficiently map logical tasks onto
threads

● TBB Runtime library maps tasks onto threads to
maximize load balancing and squeezing
performance out of the processor
– Better portability
– Easier programming
– More understandable source code
– Better performance and scalability

32

TBB Threads

Compile:

g++ hello_world.cpp -ltbb

33

Thread pool

A number of threads will be reused throughout your application to
avoid the overhead of spawning them (or spawning too many)

34

Parallelizing for loops with tbb

for(int i =0; i<N; ++i) x[i]++;

becomes
oneapi::tbb::parallel_for(

 oneapi::tbb::blocked_range<int>(0,N,<G>),

 [&](const oneapi::tbb::blocked_range<int>& range)

 {

 for(int i = range.begin(); i< range.end(); ++i)

 {

 x[i]++;

 }

 }, <partitioner>);

35

Scalability

● A loop needs to last for at least 1M clock cycles for
parallel_for to become worth it

● If the performance of your application improves by
increasing the number of cores, the application is said to
scale strongly. There is usually a limit to the scaling.

● Usually, adding more cores than the limit does not only
result in performance improvements, but performance falls.
– Overhead in scheduling and synchronizing many small tasks

starts dominating

● TBB uses the concept of Grain Size to keep data splitting
to a reasonable level

36

Grain Size

● If GrainSize is 1000 and the loop iterates over
2000 elements, the scheduler can distribute the
work at most to 2 processors

● With a GrainSize of 1, most of the time is spent
in packaging

37

Automatic Partitioner

● The automatic partitioner is often more than
enough to have good performance

● Heuristics that:
– Limits overhead coming from small grain size
– Creates opportunities for load balancing given by

not choosing a grain size which is too large

● Sometimes controlling the grainSize can lead to
performance improvements

38

Partitioners

● affinity_partitioner can improve performance when:
– data in a loop fits in cache
– the ratio between computations and memory accesses is low

● simple_partitioner enables the manual ninja mode
– You need to specify manually the grain size G
– The default is 1, in units of loop iterations per chunk
– Rule of thumb: G iterations should take at least 100k clock

cycles

39

Mutex Flavors

● Scalability
– Not scalable if the waiting threads consume excessive

processor cycles and memory bandwidth, reducing the
speed of threads trying to do real work

● Fairness
– Serves threads in the order they arrived (queuing_mutex)

● Yielding or Blocking
– Yield: repeatedly poll, if no work allowed temporarily yield

the processor
– Block: yield the processor until the mutex permits progress

40

Mutex
● Header: #include <oneapi/tbb/mutex.h>
● Wrapper around OS calls:

– Portable across all operating systems supported by TBB
– Releases the lock if an exception is thrown from the protected region of code

● Usage:
oneapi::tbb::mutex myMutex;

...

{

 oneapi::tbb::scoped_lock myLock(myMutex);

 //critical section here

 …

}

● If the lock is lightly contended and the duration of the critical section is small, use spin_mutex
– thread busy waits for lock to be released

oneapi::tbb::spin_mutex myMutex;

...

{

oneapi::tbb::spin_mutex::scoped_lock myLock(myMutex);

//critical section here

…

}

41

Exercises 2 and 3 with tbb

● Try replacing std::threads with a
oneapi::tbb::parallel_for in exercises 2 and
3

● Measure time to determine strong and weak
scaling

42

Concurrent containers

● Concurrent containers allow concurrent thread-safe
read-write access by multiple threads
oneapi::tbb::concurrent_vector<T>

oneapi::tbb::concurrent_queue<T>

oneapi::tbb::concurrent_hashmap<Key,T,HashCompare>

● For example:

#include <oneapi/tbb/concurrent_vector.h>

…

oneapi::tbb::concurrent_vector<int> myVector;

… // later in a parallel section

myVector.push_back(x);

43

Exercise 4 - Parallel Histogram

● Generate 500M floats normally distributed with average
0 and sigma 20

● Create a thread-safe histogram class with 100 bins of
width 5 (first and last bins contain overflow)

● Use parallel for to push these numbers in the histogram
● Measure strong scaling
● Measure how performance changes, when modifying the

number of bins
● Can you think of another pattern for mitigating high

contention cases?

44

Parallel Scheduler

● Efficient load balancing by work stealing
● Reduce context switching
● Preserve data locality
● Keep CPUs busy
● Start/terminating tasks is up to 2 orders of

magnitude faster than spawning/joining threads

45

Depth-first execute, breadth-first
theft
● Strike when the

cache is hot
– The deepest

tasks are the
most recently
created tasks
and, therefore,
the hottest in
the cache

● Minimize space

46

Task Parallelism with TBB
● A task_group is a container of potentially concurrent and independent tasks

● A task can be created from a lambda or a functor

● A very stupid way to compute the Fibonacci sequence (a lot of duplicate calculations)

47

backup

48

Parallel algorithms in C++

● Starting from C++17, parallel/vectorized
versions of standard algorithms started to
appear

● You mostly don't have to think about what
kind of parallel implementation is hidden under
the hood

● You can control the behavior by changing the
execution policy

49

Execution Policies (since C++17)

● std::execution::seq : a parallel algorithm's execution
may not be parallelized.

● std::execution::par : indicate that a parallel algorithm's
execution may be executed in an unordered fashion in
unspecified threads, and sequenced with respect to one
another within each thread.

● std::execution::par_unseq : indicate that a parallel
algorithm's execution may be executed in an unordered
fashion in unspecified threads, and unsequenced with
respect to one another within each thread.

50

Parallel Algorithms
● std::accumulate
● std::adjacent_difference
● std::inner_product
● std::partial_sum
● std::adjacent_find
● std::count
● std::count_if
● std::equal
● std::find
● std::find_if
● std::find_first_of
● std::for_each
● std::generate
● std::generate_n
● std::lexicographical_compare
● std::mismatch
● std::search

std::search_n
● std::transform
● std::replace
● std::replace_if
● std::max_element
● std::merge
● std::min_element
● std::nth_element
● std::partial_sort
● std::partition
● std::random_shuffle
● std::set_union
● std::set_intersection
● std::set_symmetric_difference
● std::set_difference
● std::sort
● std::stable_sort
● std::unique_copy

51

Examples of what is possible

#include <execution>

...

std::vector<int> v;

// fill the vector

...

// sort it in parallel

std::sort(std::execution::par, v.begin(), v.end());

// apply a function foo to each element

std::for_each(std::execution::par_unseq, v.begin(), v.end(),
foo);

52

Unordered algorithms

std::vector<int> v;

// fill the vector

...

// reduce it in parallel

// reduction_binary_op has to be commutative and associative
 // operation

auto y = std::reduce(std::par_unseq, v.begin(), v.end(),
[initialvalue], [reduction_binary_op]);

53

std::transform_reduce, aka the parallel C++ swiss
knife

● Takes a container of elements of type T
● Produces an object of type R
● Requires a transformation function

R foo(const T&)

● Requires a requires a binary operation:
 R bar(const R&,const R&)

● Requires an initial value for the reduction

54

example
● The norm of a vector is:

sqrt(x[0]*x[0] + x[1]*x[1] + ... + x[N-1]*x[N-1])

std::vector<double> v; // fill it

double result2 =
std::transform_reduce(std::par_unseq,

v.begin(), v.end(),
// transform
[](double elt) { return elt*elt; },
// initial value
0.0,
// reduction
[](double x, double y) {return x+y;}
);

double norm = std::sqrt(result2);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Memory access patterns: cached
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

