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Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best 

teaching standards!
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https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing
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You will learn...

● Threads and Concurrency
● std::threads
● locks/mutual execution
● atomics
● Parallel algorithms
● Intel Threading Building Blocks
● Parallel execution with tbb
● Tasks parallelism
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Threads

● A thread is an execution context, a set of register 
values 

● Defines the instructions to be executed and their order
● A CPU core fetches this execution context and starts 

running the instructions: the thread is running
● When the CPU needs to execute another thread, it 

switches the context , i.e. saving the previous context 
and loading the new one
– Context switching is expensive 
– Avoid threads jumping from a CPU core to another
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Threads enable concurrency
● Concurrency does not imply parallelism
● If your program contains independent parts, they are the 

perfect candidates for running concurrently
● Restaurant for dinner:

– cooking food and preparing the tables are independent tasks and 
they can be performed by different workers to gain a speed-up

● A & B are concurrent wrt to each other and are also parallel 
wrt to C, D, E,F 
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Critical Path

● T = 1 is the time to compute a 
red box

● Serial Time = 8
● Span = 6
● Maximum speed-up = 8/6 ~ 1.33
● Speed up with 2 cores = 1.33
● Speed up with 100 cores = 1.33
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std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

}

compile with 

g++ std_threads.cpp -pthread -o std_threads
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std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

}

Define a fuction that prints Hello world  

void f(int i){

  std::cout << “Hello world from thread” << i << 
std::endl;

}
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std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

   auto f = [](int i){

   std::cout << "hello world from thread " << i << std::endl;

  };

//Construct a thread which runs the function f 

  std::thread t0(f,0);

  

//and then destroy it by joining it

  t0.join();

}
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Congratulations!

● You have just written your first concurrent 
program

● Let's add some more threads and look at the 
output
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std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

   auto f = [](int i){

   std::cout << "hello world from thread " << i << std::endl;

  };

//Construct a thread which runs the function f 

 std::thread t0(f,0);   std::thread t1(f,1);   std::thread t2(f,2);

  

//and then destroy it by joining it with the main thread

  t0.join(); t1.join(); t2.join();

}
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Fork-join

● The construction of a thread is asynchronous, fork
● Threads execute independently
● join is the synchronization point with the main thread
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Before we move on, measuring time
#include <chrono>

...

auto start = std::chrono::steady_clock::now();

  f(i);

auto stop = std::chrono::steady_clock::now();

std::chrono::duration<double> dur= stop - start;

std::cout << dur.count() << " seconds" << std::endl;

f() is the function that you want to measure

Be careful, asynchronous functions return immediately: remember 
to synchronize before stopping the timer.
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Exercise 1

● You want to sum the elements of a vector in 
parallel using 4 threads

● Accumulate the sum in the variable sum
● Let's start by creating a thread
● Brainstorming time!
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Data Race

A race condition occurs when multiple tasks 
read from and write to the same memory 
without proper synchronization. 

● The “race” may finish correctly sometimes and 
therefore complete without errors, and at other 
times it may finish incorrectly. 

● If a data race occurs, the behavior of the 
program is undefined.
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std::mutex

● Avoiding that multiple threads access a shared 
variable

● Use it together with a scoped lock:
#include <mutex>

std::mutex myMutex;

...

{ 

  std::lock_guard<std::mutex> myLock(myMutex);

  //critical section begins here

  std::cout << "Only one thread at a time" << std::endl;

} // ends at the end of the scope of myLock
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Some measurements
● Now you're ready to increase the number of threads!
● Time vs number of threads?
● Effect of privatization?

● Hint for creating multiple threads:

auto n = std::thread::hardware_concurrency();

std::vector<std::thread> v;

for (auto i = 0; i < n; ++i) {

     v.emplace_back(f,i);

}

for (auto& t : v) {

    t.join();

}
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Exercise 2 - Numerical Integration

We know that:

– The integral can be 
approximated as the 
sum of the rectangles:
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Numerical integration
constexpr int num_steps = 1<<20;

double pi = 0.;

constexpr double step = 1.0/(double) num_steps;

double sum = 0.;

for (int i=0; i< num_steps; i++){

  auto x = (i+0.5)*step;

  sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

std::cout << "result: " << std::setprecision (15) << pi << std::endl;

●Try to parallelize it 
●Measure time vs number of threads, vs number of steps, play with parameters 
and check precision

●Try privatization
●What happens if one thread runs over more steps than the others? Why?



Memory access patterns: cached

Effective parallel programming 
requires that we have a sense of the 
importance of locality. 

For optimal CPU cache utilization, 
the thread a should process element i 
and i+1

• stride=1 
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False Sharing

● Suppose that:
– a cache line is 64bytes
– two threads (x and y) run on processors that share their cache
– we have two arrays int A[500], B[500]
– the end of A and the beginning of B are in the same cache line
– thread x modifies A[499], and loads the corresponding cache-line 

in cache
– thread y modifies B[0]

● The processor needs to flush the cache lines, reloading the 
cache for thread x and invalidating the cache for thread y

● Solution: align/padding to cache-line size
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Exercise 3 - π with Monte Carlo

● The area of the circle is π
● The area of the square is 4
● Generate N random x and 

y between -1 and 1:
– if r < 1: the point is inside 

the circle and increase Nin 

– The ratio between Nin and N 
converges to the ratio 
between the areas 
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std::atomic
● Atomic types:

– encapsulate a value whose access is guaranteed to not cause data races
– other threads will see the state of the system before the operation

started or after it finished, but cannot see any intermediate state 
– can be used to synchronize memory accesses among different threads
– at the low level, atomic operations are special hardware instructions
– (hardware guarantees atomicity)

● The primary std::atomic template may be instantiated with any 
TriviallyCopyable type T

● Common architectures have atomic fetch-and-add instructions for integers
#include <atomic>

std::atomic<int> x = 0; int a = x.fetch_add(42);

● reads from a shared variable, adds 42 to it, and writes the result back: all in one 
indivisible step
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Trivially Copyable

● Trivially copyable
● The primary std::atomic template may be instantiated

with any TriviallyCopyable type T
– Continuous chunk of memory
– Copying the object means copying all bits (memcpy)
– No virtual functions, noexcept constructor

std::atomic<int> i; // OK

std::atomic<double> x; // OK

struct S { long x; long y; }; 

std::atomic<S> s; // OK!
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std::atomic<T>

● read and write operations are always atomic
● std::atomic<T> provides operator overloads only for atomic operations 

(incorrect code does not compile)
std::atomic<int> x{0}

++x;

x++;

x += 1;

x |= 2;

x *= 2; //this is not atomic and will not compile

int y = x * 2; // atomic read of x

x = y + 1; // atomic write of x

x = x + 1; // atomic read and then atomic write

x = x * 2; // atomic read and then atomic write

int z = x.exchange(y); // Atomically: z = x; x = y;
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Compare-and-swap (CAS)
bool success = x.compare_exchange_weak(y, z);

uint32_t fetch_multiply(std::atomic<uint32_t>& shared, uint32_t multiplier)

{

    uint32_t oldValue = shared.load();

    while (!shared.compare_exchange_weak(oldValue, oldValue * multiplier)) { }

    return oldValue;

}
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Expressing Parallelism with
Intel Threading Building Blocks
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Why TBB?

● Intel OneAPI Threading Building Blocks is a 
library which allows to express parallelism on 
CPUs in a C++ program 

● Parallelizing for loops can be tedious with 
std::threads

● One wants to achieve scalable parallelism, easily
● To use the TBB library, you specify tasks, not 

threads, and let the library map tasks onto 
threads in an efficient manner
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Why TBB?

● Direct programming with threads forces you to do 
the work to efficiently map logical tasks onto 
threads

● TBB Runtime library maps tasks onto threads to 
maximize load balancing and squeezing 
performance out of the processor
– Better portability
– Easier programming
– More understandable source code
– Better performance and scalability
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TBB Threads

Compile:

g++ hello_world.cpp -ltbb
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Thread pool

A number of threads will be reused throughout your application to 
avoid the overhead of spawning them (or spawning too many) 
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Parallelizing for loops with tbb

for(int i =0; i<N; ++i)  x[i]++;

becomes
oneapi::tbb::parallel_for(

     oneapi::tbb::blocked_range<int>(0,N,<G>),

     [&](const oneapi::tbb::blocked_range<int>& range) 

     {

         for(int i = range.begin(); i< range.end(); ++i)

         {

           x[i]++;

         }

     }, <partitioner>);
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Scalability

● A loop needs to last for at least 1M clock cycles for 
parallel_for to become worth it

● If the performance of your application improves by 
increasing the number of cores, the application is said to 
scale strongly. There is usually a limit to the scaling.

● Usually, adding more cores than the limit does not only 
result in performance improvements, but performance falls.
– Overhead in scheduling and synchronizing many small tasks 

starts dominating

● TBB uses the concept of Grain Size to keep data splitting 
to a reasonable level
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Grain Size

● If GrainSize is 1000 and the loop iterates over 
2000 elements, the scheduler can distribute the 
work at most to 2 processors

● With a GrainSize of 1, most of the time is spent 
in packaging
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Automatic Partitioner

● The automatic partitioner is often more than 
enough to have good performance

● Heuristics that:
– Limits overhead coming from small grain size
– Creates opportunities for load balancing given by 

not choosing a grain size which is too large

● Sometimes controlling the grainSize can lead to 
performance improvements
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Partitioners

● affinity_partitioner can improve performance when:
– data in a loop fits in cache
– the ratio between computations and memory accesses is low

● simple_partitioner enables the manual ninja mode
– You need to specify manually the grain size G
– The default is 1, in units of loop iterations per chunk
– Rule of thumb: G iterations should take at least 100k clock 

cycles
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Mutex Flavors

● Scalability
– Not scalable if the waiting threads consume excessive 

processor cycles and memory bandwidth, reducing the 
speed of threads trying to do real work

● Fairness
– Serves threads in the order they arrived (queuing_mutex)

● Yielding or Blocking
– Yield: repeatedly poll, if no work allowed temporarily yield 

the processor 
– Block: yield the processor until the mutex permits progress
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Mutex
● Header: #include <oneapi/tbb/mutex.h>
● Wrapper around OS calls:

– Portable across all operating systems supported by TBB
– Releases the lock if an exception is thrown from the protected region of code

● Usage:
oneapi::tbb::mutex myMutex;

...

{

  oneapi::tbb::scoped_lock myLock( myMutex );

  //critical section here

   …

}

● If the lock is lightly contended and the duration of the critical section is small, use spin_mutex 
– thread busy waits for lock to be released

oneapi::tbb::spin_mutex  myMutex;

...

{

oneapi::tbb::spin_mutex::scoped_lock myLock( myMutex );

//critical section here

…

}



41

Exercises 2 and 3 with tbb

● Try replacing std::threads with a 
oneapi::tbb::parallel_for in exercises 2 and 
3

● Measure time to determine strong and weak 
scaling
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Concurrent containers

● Concurrent containers allow concurrent thread-safe 
read-write access by multiple threads
oneapi::tbb::concurrent_vector<T>

oneapi::tbb::concurrent_queue<T>

oneapi::tbb::concurrent_hashmap<Key,T,HashCompare>

● For example:

#include <oneapi/tbb/concurrent_vector.h>

…

oneapi::tbb::concurrent_vector<int> myVector;

… // later in a parallel section

myVector.push_back(x);



43

Exercise 4 - Parallel Histogram

● Generate 500M floats normally distributed with average 
0 and sigma 20

● Create a thread-safe histogram class with 100 bins of 
width 5 (first and last bins contain overflow)

● Use parallel for to push these numbers in the histogram 
● Measure strong scaling
● Measure how performance changes, when modifying the 

number of bins
● Can you think of another pattern for mitigating high 

contention cases?
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Parallel Scheduler

● Efficient load balancing by work stealing
● Reduce context switching
● Preserve data locality
● Keep CPUs busy
● Start/terminating tasks is up to 2 orders of 

magnitude faster than spawning/joining threads
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Depth-first execute, breadth-first 
theft
● Strike when the 

cache is hot
– The deepest 

tasks are the 
most recently 
created tasks 
and, therefore, 
the hottest in 
the cache

● Minimize space
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Task Parallelism with TBB
● A task_group is a container of potentially concurrent and independent tasks

● A task can be created from a lambda or a functor

● A very stupid way to compute the Fibonacci sequence (a lot of duplicate calculations)
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backup
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Parallel algorithms in C++

● Starting from C++17, parallel/vectorized 
versions of standard algorithms started to 
appear

● You mostly don't have to think about what 
kind of parallel implementation is hidden under 
the hood

● You can control the behavior by changing the 
execution policy
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Execution Policies (since C++17)

● std::execution::seq :  a parallel algorithm's execution 
may not be parallelized.

● std::execution::par :  indicate that a parallel algorithm's 
execution may be executed in an unordered fashion in 
unspecified threads, and sequenced with respect to one 
another within each thread.

● std::execution::par_unseq :  indicate that a parallel 
algorithm's execution may be executed in an unordered 
fashion in unspecified threads, and unsequenced with 
respect to one another within each thread.
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Parallel Algorithms
● std::accumulate
● std::adjacent_difference
● std::inner_product
● std::partial_sum
● std::adjacent_find
● std::count
● std::count_if
● std::equal
● std::find
● std::find_if
● std::find_first_of
● std::for_each
● std::generate
● std::generate_n
● std::lexicographical_compare
● std::mismatch
● std::search

std::search_n
● std::transform
● std::replace
● std::replace_if
● std::max_element
● std::merge
● std::min_element
● std::nth_element
● std::partial_sort
● std::partition
● std::random_shuffle
● std::set_union
● std::set_intersection
● std::set_symmetric_difference
● std::set_difference
● std::sort
● std::stable_sort
● std::unique_copy
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Examples of what is possible

#include <execution>

...

std::vector<int> v;

// fill the vector 

...

// sort it in parallel

std::sort(std::execution::par, v.begin(), v.end());

// apply a function foo to each element

std::for_each(std::execution::par_unseq, v.begin(), v.end(), 
foo);
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Unordered algorithms

std::vector<int> v;

// fill the vector 

...

// reduce it in parallel

// reduction_binary_op has to be commutative and associative  
 // operation

auto y = std::reduce(std::par_unseq, v.begin(), v.end(), 
[initialvalue], [reduction_binary_op]); 
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std::transform_reduce, aka the parallel C++ swiss 
knife

● Takes a container of elements of type T
● Produces an object of type R
● Requires a transformation function 

R foo(const T&)

● Requires a requires a binary operation:
 R bar(const R&,const R&)

● Requires an initial value for the reduction
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example
● The norm of a vector is:

sqrt(x[0]*x[0] + x[1]*x[1] + ... + x[N-1]*x[N-1])

std::vector<double> v; // fill it

double result2 = 
std::transform_reduce(std::par_unseq,

v.begin(), v.end(),
// transform
[](double elt) { return elt*elt; },
// initial value
0.0,
// reduction
[](double x, double y) {return x+y;}
);

double norm = std::sqrt(result2);
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