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Introduction

The relevance of what we are discussing depends on the field of applications

multimedia, video-games

analysis of scientific data

encryption of data

. . .
And in general is important to know that for computers

a+ b 6= b+ a

a− b = 0 6⇒ a = b

. . .
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Binary System
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Data Storing

Data are represented using only two symbols: 0 and 1.

This because it is easy to build electronic devices that represents two states.

The smallest unit is called bit shorthand for binary digit.

The Byte is a sequence of 8 bits, e.g 1101 0010

The Word is a sequence of bytes, e.g. 2, 4 or 8 corresponding to 16, 32 and 64 bits.
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The Base 10 System
In the base 10 system each number is represented as a sequence of symbols

0 1 2 3 4 5 6 7 8 9

The value associated to a sequence of n symbols

cn−1 cn−2 . . . c2 c1 c0

is given by

cn−1 · 10n−1 + cn−2 · 10n−2 . . . c2 · 102 + c1 · 101 + c0 · 100

the notation is positional meaning that each symbol has a weight corresponding to the
position of the symbol in the sequence

the weights are powers of the base with the exponent index corresponding to the position of
the symbol in the sequence starting from right and counting from zero

Examples:
57 = 5 · 101 + 7 · 100

147 = 1 · 102 + 4 · 101 + 7 · 100
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The Base 2 System
At the same way, in the base 2 system numbers are representd by a sequence of 0 and 1.

The value corresponding to a sequence of n bits or symbols cn−1 cn−2 . . . c2 c1 c0
is given by

cn−1 · 2n−1 + cn−2 · 2n−2 . . . c2 · 22 + c1 · 21 + c0 · 20

the notation is postional meaning that each symbol has a different weight corresponding to
the position of the symbol in the sequence

the weights are powers of the base with the exponent index corresponding to the position of
the symbol in the sequence starting from right and counting from zero

Examples:
1 = 1 · 20 = 110

10 = 1 · 21 + 0 · 20 = 210

101 = 1 · 22 + 0 · 21 + 1 · 20 = 510

1111 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 1510
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Converting numbers from base 10 to base 2
If X10 is a number in base 10, we may get the sequence of bits representing the number in base 2:

cn−1 cn−2 . . . c1 c0

using the following alghoritm
1 let i = 0

2 compute the quotient qi and the remainder ri dividing
X

2
, the make the assignment

X = 2 · qi + ri

3 let ci = ri

4 if qi = 0 then stop, else make X = qi and i = i+ 1, and go back to step 2
the sequence of ci ∈ {0, 1} is the binary representation of X.

An algorithm is a sequence of well defined steps that solve a problem.
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Converting from base 10 to base 2
Example: converting 13 to base 2

13/2 = 6 · 2 + 1→ c0 = 1

6/2 = 3 · 2 + 0→ c1 = 0

3/2 = 1 · 2 + 1→ c2 = 1

1/2 = 0 · 2 + 1→ c3 = 1

binary representation is 1310 = 1101.

Example: converting 16 to base 2
16/2 = 8 · 2 + 0→ c0 = 0

8/2 = 4 · 2 + 0→ c1 = 0

4/2 = 2 · 2 + 0→ c2 = 0

2/2 = 1 · 2 + 0→ c3 = 0

1/2 = 0 · 2 + 1→ c4 = 1

binary representation is 1610 = 10000.

S. F. Schifano (Univ. and INFN of Ferrara) Storing Numbers in CPUs October 4, 2021 10 / 78



Fractions in Binary
To write the binary representation of a rational number i.d, with i being the integer part and d the
decimal part, we convert i and d separetely.

To convert the decimal part d < 1, we have to write a sequence of binary digits c−1 c−2 c−3 . . .
such that d can be expressed ad sum of negative powers of 2:

d =

n∑
h=1

c−h · 2−h

To extract the sequence c−1 c−2 c−3 . . . we may use the following algorithm:
1 let i = 1

2 compute p = d · 2;

3 if p < 1, then the corrisponding binary digit is c−i = 0, equal d = p and go back to step 2;

4 if p > 1, then the corresponding binary digit is c−i = 1, equal d = p− 1, and go back to step 2;
5 if p = 1, then c−i = 1 and STOP.

The sequence c−i ∈ {0, 1} is the binary representation of the number.
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Fractions in Binary
Example: find the binary representation of 0.125

0.125 · 2 = 0.25→ c−1 = 0

0.25 · 2 = 0.5→ c−2 = 0

0.5 · 2 = 1.0→ c−3 = 1

then 0.12510 = 0.001 corresponds to

0.125 = 0 · 2−1 + 0 · 2−2 + 1 · 2−3 = 1 · 0.125 = 0.125

Example: find the binary representation of 0.6875
0.6875 · 2 = 1.375→ c−1 = 1

0.375 · 2 = 0.75→ c−2 = 0

0.75 · 2 = 1.5→ c−3 = 1

0.5 · 2 = 1.0→ c−4 = 1

then 0.687510 = 0.1011 correponds to

0.6875 = 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4 = 1 · 0.5 + 1 · 0.125 + 1 · 0.0625 = 0.6875
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Fractions in Binary
Example: find the binary representation of 0.6

0.6 · 2 = 1.2→ c−1 = 1

0.2 · 2 = 0.4→ c−2 = 0

0.4 · 2 = 0.8→ c−3 = 0

0.8 · 2 = 1.6→ c−4 = 1

0.6 · 2 = 1.2→ c−5 = 1

0.2 · 2 = 0.4→ c−6 = 0

0.4 · 2 = 0.8→ c−7 = 0

0.8 · 2 = 1.6→ c−8 = 1

. . . the sequence is repeating since the number is periodic
then 0.610 = 0.1001.

If the sequence of binary digits is repeating then the binary representation of the number is periodic even if
this was not true in base 10.
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Converting from base 2 to base 10

The base 10 representation of a binary number

cn−1 cn−2 . . . c2 c1 c0 • c−1 c−2 . . . c−h

can be extract as addition of
positive powers of two for the integer part

negative powers of two for the decimal part
n−1∑
i=−h

= ci · 2i

Example: 101011.1011 in base 10 is

1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4 = 43.6875
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Binary Representation of Negative Numbers

Negative numbers can be represented putting a minus sign symbol at the end of the leftmost digit
of the binary representation of the absolute value of the number.

Examples:

−7 = −111

−15.0625 = −1111.0001

−43.6875 = −101011.1011

. . .
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Arithmetic Operations

The arithmetic operations in base 2 can be done applying the same rules we use for base 10.

to multiply a number by 2n

I move the digits to the left by n positions inserting zeros to the right:

Example: 1002 · 1002 = 100002 = 410 · 410 = 1610

I if the number is a fraction, move the radix point by n positions to the right adding zeros if necessary:

Example:: 1011 · 1000 = 1011000, in base 10 correspond to the operation 11 · 8 = 88

to divide a number by 2−n,
I move the digits to the right by n positions inserting zeros to the left:

Example: 1011 : 10 = 10 = 1110 : 410 = 210

I if the number is a fraction move the radix point by n positions to the left inserging zeros if necessary:

Example: 111 : 10 = 11.1, in base 10 correspond to the operation 7 : 2 = 3.5.
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Operazioni aritmetiche

For addition we may apply the same rules of base 10 keeping in mind that 1 + 1 = 0.

the addition can be computed summing the corresponding digits

accounting that 1 + 1 = 0 with carry 1

Example
1111 + 11 corresponding in base 10 to 15 + 3

1111 +
11 =

10010

1001101.1011 + 1101100.1101 corresponding in base 10 to 77.6875 + 108.8125

1001101.1011 +
1101100.1101 =
10111010.1000
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Octale and Exadecimal Base
In computer science is also common to use octal and hexadecimal bases.

octal and hexadecimal are positional notations

in the octal base we use the symbols

0, 1, 2, 3, 4, 5, 6, 7

and each symbol can be stored as a semi-byte corresponding to 4 bits;

in the hexadecimal base we use the symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F

and each symbol can be stored as a byte corresponding to 8 bits.
Examples:

573.6718 = 5 · 82 + 7 · 81 + 3 · 80 + 6 · 8−1 + 7 · 8−2 + 1 · 8−3 = 379.86132812510

97A.6E116 = 9 · 162 + 7 · 161 + 10 · 161 + 6 · 16−1 + 14 · 16−2 + 1 · 16−3 = 2576.42993164062510
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Binary, Octal and Hexadecimal Numbers

binary notation is commonly used at level of
hardware

octal and hexadecimal notations are
commonly used at level of software to have a
compact representation of binary numbers.

base 10 base 2 base 8 base 16
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
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Storing Numbers
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Storing Numbers

Computers store data using binary representation with a finite number of digits.

sequences of N bits are used with the convention that the most significant – usually the
leftmost – has weight 2N−1 and the least significant – usually the rightmost – has weight 20

numbers of different types are stored using different representations.
We use the terms:

LSB=“least significant bit”, MSB“most significant bit”

Byte sequence of 8 bit

Word as a sequence if 2, 4, 8 Bytes (this is machine dependent) and corresponds to the
smallest chunck data read/write from/to memory.
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Storing Natural Numbers
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Storing Natural Numbers

N bits are used, commonly N = 32 but it is also possibile to have N = 16 and N = 64

using N bits we may represents 2N numbers in the interval [0 . . . 2N − 1]

I N = 4, we represent 24 = 16 numbers in the range [0 . . . 15] = [0 . . . 24 − 1]

I N = 16, we represent 216 = 65536 numbers in the range [0 . . . 65535] = [0 . . . 216 − 1]

I N = 32, we represent 232 = 4294 967 296 numbers in the range [0 . . . 4294967295] = [0 . . . 232 − 1]

I N = 64, we represent 264 = 18 446 744 073 709 551 616 numbers in the range

[0 . . . 18446744073709551615] = [0 . . . 264 − 1]
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Storing Natural Numbers

Multiplying or adding two N bits numbers we may get a result that can not fit into N bits generating
a condition called overflow:

N = 4, 10002 + 10002 = 100002, in decimale 8 + 8 = 16

N = 4, 01112 · 01002 = 111002, in decimale 7 · 4 = 28

Adding two numbers the overflow can be generated as carry over the MSB bits column.

Example: assume N = 4 bits:

1110 +
0010 =

10000
the results can not be represented using N = 4 bits.
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Storing Integer Numbers
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Storing Integer Numbers
Integer numbers can be stored using the represention called sign and magnitude:

one bit – usually the MSB – is used to store the sign: 0 meaning positive, 1 meaning negative

the other bits are used to represent the magnitude or absolute value of the number in base 2

Example: if N = 8, the sequence
10001011

represents the number −1110, and the bit 7 is the sign bit.

Using this representation with N bits we may store all numbers in the range

[ −(2N−1 − 1) . . . + (2N−1 − 1) ]

Example: if N = 10, the range of numbers is

[−511 . . . + 511]
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Storing Integer Numbers: Issues

Using the representation sign-and-magnitude the zero has two configurations, the zero positive
and the zero negative.

Moreover, computation of the sign bit for additions and
subtractions is not straightforward; for example assume to
have N = 8:

a = 00011011 = 2710, b = 00101011 = 4310,
a− b = 10010000

a = 00111011 = 5910, b = 00101011 = 4310,
a− b = 00010000

then, to compute the sign bit we need to check the
absolute value of operands, if |b| > |a| the sign bit is
negative, else it is positive.

Example: N = 4

Numeri positivi Numeri positivi
0000 +0 1000 -0
0001 +1 1001 -1
0010 +2 1010 -2
0011 +3 1011 -3
0100 +4 1100 -4
0101 +5 1101 -5
0110 +6 1110 -6
0111 +7 1111 -7

For these reasons the representation sign-and-magnitude is not used.
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Representation of Ingers using Two’s Complement Notation

The representation two’s complement using N bits (es. N = 32) allows to represent the numbers
z in the asymetric range [−2N−1 . . . 2N−1 − 1].

if N are the bits available

if z ∈ [−2N−1 . . . 2N−1 − 1] is the integer number to store

the number is stored coding on N bits the value

z2C = 2N − |z|

calles two’s complement of z on N bits

subtraction is computed on N bits, assuming to borrow a bit from the N th column to compute
subtraction of bits of column index N − 1 if necessary
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Representation of Ingers using Two’s Complement Notation

If the number z to store is positive
we code the binary representation of the number over N − 1 bits

leaving the MSB set to 0

Example:
if N = 8 and z10 = 1310, z2C = 1310 = 0000 1101

if N = 4 and z10 = 610, z2C = 136 = 0110

if N = 4 and z10 = 1510,
in this case the number can NOT be represented and we get a wrong encoding:
z2C = 1510 = 0111

The largest positive number that we can represent is zM = 2N−1 − 1, e.g. using N = 8 we have
zM = 127, abd with N = 4 we have zM = 7.
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Representation of Ingers using Two’s Complement Notation
If the number z to store is negative

the number is represented using the two complement over N bits

to get the two complement binary representation z2C of z we compute

z2C = (2N − |z|)2

doing this the MSB (bit N − 1) is set to 1 since the value of the minuend on N bits is zero and
the subtraction sets the bit index N − 1 to 1.

Example, se N = 8, z = −1310, we have

(−13)2C = 28 − |z| = 256− 13 = 243 = 1111 0011

since

1 0000 0000 - 25610 -
0000 1101 = 1310 =
1111 0011 243
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Representation of Ingers using Two’s Complement Notation

Using the two’s complement notation
the largest positive number we can represent is zM = 2N−1 − 1

the smallest negative number we can represent is zm = −2N−1

using N bits we may represnt numbers in the range [−2N−1 . . . 2N−1 − 1]

Esempio:
using N = 4 we represent numbers in the range [−23 . . . 23 − 1] = [−8 . . . 7]

using N = 8 we represent numbers in the range [−27 . . . 27 − 1] = [−128 . . . 127]

using N = 10 we represent numbers in the range [−29 . . . 29 − 1] = [−512 . . . 511]
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Representation of Ingers using Two’s Complement Notation

The two’s complemet binary representation of a number z can be computed using two different
algorithms.

Let z the number and |z|2 the binary representation of absolute value of z:

Algorithm 1: starting from the LSB e moving towards the MSB of |z|2
I leave unchanged all bits up to the first 1 included

I swap all the others bit up to the end (1 becoms 0, and 0 becomes 1)

Algorithm 2: let z the and |z|2 the binary representation of absolute value of z:
I swap all the bits of |z|2 getting the ones’ complement representation,

I sum 1
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Representation of Ingers using Two’s Complement Notation

Example: N = 8 and z = −33
|z| = 33 = 0010 0001

applying the first algorithm the two’s complement of |z| is

1101 1111

applying the latter algorithm the ones’s complement of |z| is

1101 1110

and summing 1 we get
1101 1110 + 1 = 1101 1111

Using N = 8, the numbers z 6∈ [−128 . . . 127] can NOT be represented.
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Representation of Ingers using Two’s Complement Notation

Esempio: N = 4 e z = −6
|z| = 6 = 0110

using the first algorithm we get
1010

using the latter algorithm the ones’ complement of |z| is

1001

and adding 1 we get
1001 + 1 = 1010

Using N = 4, the numbers z 6∈ [−8 . . . 7] can NOT be represented.
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Representation of Integers using Two’s Complement Notation
WARNING
Computation of complement two depend on the number N of bits used in the representation.

This means that computing the two’s complement of a number z requires to apply the algorithm 1
and 2 representing the |z| exactely on N bits.

Example: N = 8, z = −3

writing |z| = 11, the two’s complement is z2C = 01, and representing on 8 bits we have
0000 0001 WRONG !, the sign bit is zero !

writing |z| = 0000 0011 the two’s complement is z2C = 1111 1101, and in this case the sign bit is
1 as expected.

WARNING
Using N bit we represent numbers z ∈ [−2N−1 . . . 2N−1 − 1].

S. F. Schifano (Univ. and INFN of Ferrara) Storing Numbers in CPUs October 4, 2021 35 / 78



Representation of Integers using Two’s Complement Notation

Example, using N = 4, numbers are coded as:

Positive Numbers Negative Numbers
0000 +0 1000 -8
0001 +1 1001 -7
0010 +2 1010 -6
0011 +3 1011 -5
0100 +4 1100 -4
0101 +5 1101 -3
0110 +6 1110 -2
0111 +7 1111 -1

only one representation for zero

numbers that can be represented are in the range [ −2N−1 . . . (2N−1 − 1) ], for example with
N = 4 all numbers in the range [−8 . . . 7]
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Converting from two’s complement to base 10

To convert a binary number represented using the two’s complement notation into the
corresponding base 10 number

if the number is positive use the usual converion from binary to base 10

if the number is negative
I compute the two’s complement of the number

I convert the number into base 10

I add minus sign

Example:
N = 4, 0111 = 7

N = 4, 1101 the two’s complement is 0011 = 3, then the result is 1101 = −3

N = 8, 1101 0101 the two’s complement is 0010 1011 = 43, then the result is 1101 0101 = −43
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Subtraction
Let us compute a− b:

write the subtrahend −b into two’s complement representation

compute the sum (a)2 + (−b)2C neglecting the carry on the column of MSB bits.

Examples:
a = 0001 1011 = 2710, b = 0010 1011 = 4310

I −43 = 1101 0101

I a+ (−b) = 0001 1011 + 1101 0101 = 1111 0000 = −16

a = 0011 1011 = 5910, b = 0010 1011 = 4310
I −43 = 1101 0101

I a+ (−b) = 0011 1011 + 1101 0101 = 0001 0000 = 16

Using the two’s complement the sign bit is computed as the others value bit.
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Addition

The sum of either two positive integers or negative integers may generate an integer that can not
be represented generating an overflow.

if addends have different sign bits no overflow can be generated and the result can be
represented;

if addends have the same sign bit
I if the result have the bit sign equal to the addends the result is correct;
I otherwise the result is wrong generating an overflow.

Esempio: sia N = 4

a = 1000 = −810, a+ a = 1000 + 1000 = 0000, generate an overflow as the result should be
positive

a = 0111 = 710, a+ a = 0111 + 0111 = 1110, generate an overflow as the result should be
positive
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Examples
N = 8, a = 127 = 0111 1111, b = 110 = 0000 0001

a+ b = 1000 0000 = −128

overflow sign bit different from that of operands

N = 8, a = 125 = 0111 1101, b = 210 = 0000 0010

a+ b = 0111 1111

OK sign bit equal to that of operands

N = 6, a = −25 = 10 0111, b = −13 = 11 0011

(−a) + (−b) = 00 1010

overflow sign bit different from that of operands

N = 6, a = 25 = 01 1001, b = −13 = 11 0011

a− b = 00 1100

OK even a carry over the last column is generated since operands have different sign values.
S. F. Schifano (Univ. and INFN of Ferrara) Storing Numbers in CPUs October 4, 2021 40 / 78



Two’s Complements Notation
Using the two’s complement notation

zero has only one representation

the operation of sum is equal to that of natural numbers

sums and subs may be realized using only one circuit computing

a− b = a+ b2C

ad the sign bit is computed as any other bit.

using N bits the range is [ −2N−1 . . . (2N−1 − 1) ]

The representation over N + k bits can be extracted as sign extension of the representation over
N bits.

Example: N = 4, −7 = 1001 using N = 8 bits −7 = 1111 1001.
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Representing Integer Numbers using Excess Notation

numbers are represented over N bits and the coding is called excess
2N−1, example in picture we a coding excess 8

we represent numbers z ∈ [−2N−1 . . . 2N−1 − 1]

we code over N bits the binary value 2N−1 + z where 2N−1 is called
bias

the coding is similar to the two’s complement with the sign bit
reversed (1 for positive and 0 for negative)

addition operations needs to be adjusted subtracting the bias

this notation is not used for integer numbers but used in the
representation of real numbers.
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Storing Real Numbers
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Representation of Real Numbers

representation of real numbers (rationals and irrationals) like

1

3

2

7
. . . π

√
2
√
3 . . .

needs an infinite number of bits

CPUs represent numbers using a finite number of bits

for this reason we may only implement an approximate representation of real numbers.

There two possible approaches
fixed point

floating point

Both divide the sequence of N bits into several fields each with a precise maning and format.
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Fixed Point Representation
Using fixed point the N bit word is divided in two fields

one stores the fractional part

the latter stores the integer part
Example: N = 32, i = 16 bits the integer part and f = 16 bits for the fractional

For example, to represent the number 13.25
13 in binary is 1101: 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 13

0.25 in binary is 0.01: 0 · 2−1 + 1 · 2−2 = 1/4 = 0.25

then, the representation in fixed point of 13.25 is

0000 0000 0000 1101︸ ︷︷ ︸
16 bit parte intera

. 0100 0000 0000 0000︸ ︷︷ ︸
16 bit parte frazionaria

We are assuming now to represent only positive numbers; to represent negative numbers we may
use the MSB as sign bit.
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Fixed Point Representation

Example: write the fixed point representation of number 22.875 using a word di 12 bits with 8 bits
for the integer part and 4 bits for the fractional part.

write 22 in binary
22 = 24 + 22 + 21

22 = 1 0110

write 0.875 in binary
0.875 = 0.5 + 0.25 + 0.125 = 2−1 + 2−2 + 2−3

0.875 = 0.111

the representation in fixed point is
0001 0110 . 1110
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Fixed Point Representation

Example: let 1000 0001.0011 the fixed point representation of a number with 12 bits, 8 for the
fractional and 4 for the integer. The corrisponding value base 10 is:

compute the base 10 value of integer part

1 · 27 + 0 · 26 + . . . 0 · 22 + 1 · 20 = 128 + 1 = 129

compute the base 10 value of fractional part

0 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4 = 1/8 + 1/16 = 0.1875

the base 10 value of 1000 0001.0011 is 129.1875
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Fixed Point Representation

Example: write the fixed point representation with i = 8 e f = 8 of number 23.625.
write 23 as sum of positive powers 2

23 = 24 + 22 + 21 + 20

the binary representation is 1 0111

write 0.625 as sum of negative powers 2

0.625 = 0.5 + 0.125 = 2−1 + 2−3

getting the binary representation 0.101

write the integer part using 8 bits and adding zeros to the left, and the fractional part on 8 bits
adding zeros to the right

0001 0111.1010 0000
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Fixed Point Representation

Esempio: write the smallest number that we can represent in fixed point using i = 8 and f = 8.

the smallest number is
0000 0000 . 0000 0001

the integr part has value 0

the fractional part has value 2−8 = 0.00390625

the corresponding value base 10 of 0000 0000.0000 0001 is 0.00390625.
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Fixed Point Representation
Esempio: write the largest number that we can represent in fixed point using i = 8 and f = 8.

the largest number that we can represent is

1111 1111.1111 1111

the base 10 value of integer part is

7∑
h=0

2h = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

the base 10 value of fractional part is

8∑
h=1

2−h = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 = 0.99609375

the base 10 value of 1111 1111.1111 1111 is 255.99609375.
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Fixed Point Representation

The granularity is the smallest difference between two consecutive numbers; this is directly
related to the level of precision of the notation.

If the fractional part is represented using f bits, the granularity is 2−f .

Example: assume N = 8, i = 4, f = 4

let consider the number r0 = 0000.0000 = 010

the smallest number greater than r0 is r1 = 0000.0001 = 1/16 = 0.062510

the difference δ = r1 − r0 = 0.0625 = 2−4 is the gap between the two numbers

all numbers between r0 e r1 can NOT be represented !
In this exaple the granularity is 2−4 = 0.0625.
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Fixed Point Representation

If the fractional part can not be represent using f bits the value should be truncated.

Example: write the fixed point represention of the number 2 +
5

8
using f = 2 bits

the binary representation of 2 +
5

8
= 2.625 is

2 +
4 + 1

8
= 2 +

(
1

2
+

1

8

)
= 10 . 101

fitting the representation into fixed point format with f = 2, the rightmost 1 should be removed
getting

10 . 10 = 2.5

that is an approximation of the original value !
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Fixed Point Representation
The fixed point representation is NOT used as it does not allow to use efficiently the bits when big
and very small numbers are used.

Esempio: N = 32, i = 16, f = 16

the fixed point representation of 60000.00 is

1110101001100000 . 0000000000000000

the bits in the fractional part are all set to zero.

the fixed point representation of 2−15 is

0000000000000000 . 0000000000000010

in this case the bits of the integer part are all set to zero.

In the fixed point notation the number of bits for the integer and fractional part is fixed once for all
and can not be changed accrding to the value of the number.
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Floating Point Representation

The basic idea of floating point notation is to use the N bits word in efficient way, in particular to
use the bits:

to represents the fractional part when small numbers are used

to represent the integer part when large numbers are used
allowing to represent small numbers with a smaller granularity.

To this end, we use the normalized scientific notation where each real number can be written in
the format

± a.m · be

with 1 ≤ a < b, m being the mantissa or significand, b the base and e the exponent.

Using the normalized scientifc notation the first digit before the radix point is always ≥ 1.
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Floating Point Representation

Normalized Scientic Representation
x = ± a.m · be

Example in base b = 10:

347.65 = 3.4765 · 102, a = 3, m = 4765, e = 2

0.007653 = 7.653 · 10−3, a = 7, m = 653, e = −3

310749 = 3.10749 · 105, a = 3, m = 10749, e = 5

0.00018 = 1.8 · 10−4, a = 1, m = 8, e = −4
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Floating Point Representation

Using he base b = 2, each binary number can be written in the format

± a.m · be 1 ≤ a < 2

where m is the mantissa, b = 2 is the base and e the exponent.

Example:
110.1 = 1.101 · 22 = 6.510, m = 101, e = 2

0.001001 = 1.001 · 2−3 = 0.14062510, m = 001, e = −3

1000.0 = 1.0 · 23 = 8.010, m = 0, e = 3

Using the base 2 each binary number has a = 1 then it can be omitted in the representation !
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Floating Point Representation

IEEE 754 is the standard used to define floating point numbers.

For the single precision representation we use a N = 32 bits word divided into the fields:
1 sign bit s (the MSB)

8 bit for the exponent e represented in excess 127 notation e = 127 + E where E is the
exponent of the number representd in normalized scientific notation

23 bit for the matissa m
Example: represent the number 0.15625

It is not necessary to represent a since it is assumed to be always 1; it is named the hidden bit.
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Floating Point Representation

For single precision numbers the IEEE 754 defines
the mantissa m is represented in binary format using 23 bits

the exponent e
I is represents in binary format using 8 bits and the excess k=127 notation

e = (E + 127)2

where E is the exponent of the number represented using the scientific normal notation.

I using 8 bits for the exponent we may represent 256 different (exponent) values

I the negative exponents of numbers < 1, that is the values E = [−127 . . .− 1] are mapped as
e = [0 . . . 126]

I the positive exponents of numbers > 1, that is the values E = [0 . . . 128] are mapped onto
e = [127 . . . 255]

I the exponent e is than alway ≥ 0 and we do not need to represent the sign.
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Floating Point Representation
Example: write the IEEE 754 floating point representation of number −3.5.

The binary representaion of 3.5 is 11.1, and the correspondin normal scientific representation is

1.11 · 21 = ((1 · 20 + 1 · 2−1 + 1 · 2−2) · 21)10 = (2 + 1 + 0.5)10 = 3.510

Translating this into IEEE 754 we get
s = 1

m = 1100 0000 0000 0000 0000 000, the mantissa should be represented on 23-bits adding
zeros to the right if necessary

e = (12710 + 12) = 0111 11112 + 12 = 1000 00002

The IEEE 754 format is then

1︸︷︷︸
s

10000000︸ ︷︷ ︸
e = 8 bit

11000000000000000000000︸ ︷︷ ︸
m = 23 bit

The 1 preceding the decimal point (a) is not represented (hidden bit).
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Floating Point Representation
In the IEEE 754 standard specific value of exponent are reserved

e = 0000 0000 = 010, corresponding to E = −127 is used to represent the zero if m = 0,
otherwise the denormalized numbers if m 6= 0

the values 1 ≤ (e)10 ≤ 254 corresponding to −126 ≤ E ≤ 127 are used for normalized
numbers

e = 1111 1111 = 25510, corresponding to E = 128, is used to represent the infinite if m 6= 0,
and not a number NaN if m = 0.

denormalized or subnormalized are those numbers between zero and the smallest normalized
number that we can represent. These a very small numbers that can not be represented using the
normalized format.

NaN is used for numbers that can not be representd, es.
√
−2 .

infinite is used for very large numbers that can not be represented.
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Floating Point Representation

The standard IEEE 754 use two different representations for zero: +0 e −0.
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Excercise

Es1: Extract the base 10 value of the exponent of a single-precision floating number with
e = 0011 1011:

E10 = (0011 1011)10−127 = 25+24+23+21+20−127 = 32+16+8+2+1−127 = 59−127 = −68

Es2: Extract the base 10 value of a single-precision number representd by

0 1000 0000 100 0000 0000 0000 0000 0000

the sign bit is positive

the value of exponent is E10 = (10000000)10 − 127 = 27 − 127 = 128− 127 = 1

the value of mantissa is m10 = (1.10000000000000000000000)10 = 20 + 2−1 = 1.5

the base 10 value is 1.5 · 21 = 3.0.
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Excercise

Write the 32-bit IEEE 754 representation of number −4.5.

sign bit is s = −1

binary representation of 4.510 = (4 + 0.5)10 = (22 + 2−1)10 = (100.1)2

the normalized form of 4.5 è 1.001 · 22 (we moved the radic point by two positions)

the mantissa is m = 00100000000000000000000

the exponent is e = 2 + 127 = 129 = (1000 0010)2

The 32-bit IEEE 754 representation of number −4.5 is

1 1000 0010 00100000000000000000000
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Floating Point Representation

Practical Exercise:

We can use the float-rep.c example to print the bit representation of a floating-point number:

gcc float-rep.c -o float-rep

Now, run the executable ./float-rep and enter a number, its single-precision floating-point
representation (as stored in memory) will be shown to you, next to the number it actually represent.

You can play trying several numbers...
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Floating Point Representation

for normalized numbers we have −126 ≤ E ≤ 127

the absolute value of the largest normalized number is

1. 11 . . . 111︸ ︷︷ ︸
23 bit

·2127 ≈ (1 + 1) · 2127 = 2 · 2127 = 2128 ≈ 1038

we can represent number in the range −2128 < x < 2128 (but not all numbers !)

ranges (−∞,−2128) and (2128,+∞) can not be represented (overflow)

the absolute value of the smallest normalized number is

1. 00 . . . 000︸ ︷︷ ︸
23 bit

·2−126 = 2−126 ≈ 10−38

(−2−126, 0), (0, 2−126) are the denormalized ranges including denormal numbers
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Floating Point Representation: Denormalized

The denormalized range (−2−126, 0), (0, 2−126) includes subnormals and underflow numbers.
the subnormals are numbers that can not be normalizedd since the exponent does not fits
into the available bits

in this cases the hidden bit is equal to zero and then the represention is not in the normal
format e.g.:

2−127 = (0.1)2 × 2−126 2−128 = (0.01)× 2−126

the smallest positive subnormal number is 2−23 × 2−126 = 2149

the largest negative subnormal number is −2−23 × 2−126 = −2149

subnormal numbers are stored with biased exponent zero but are decoded with the value of
the smallest allowed exponent for normals −126

production of a subnormal numbers is sometimes called gradual underflow because it allows
a computation to lose precision slowly when the result is small.
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Floating Point Representation

We can try to have a geometric intuition about what we have learn: if we plot IEEE 754 floating
point numbers on a line for each given exponent, it looks something like this:

+---+-------+---------------+-------------------------------+
exponent |126| 127 | 128 | 129 |

+---+-------+---------------+-------------------------------+
| | | | |
v v v v v
-------------------------------------------------------------

floats ***** * * * * * * * * * * * *
-------------------------------------------------------------
^ ^ ^ ^ ^
| | | | |
0.5 1.0 2.0 4.0 8.0
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Floating Point Representation: Denormalized
To understand why the further complexity of subnormals was introduced, this is how it would
hypothetically look like without:

+---+---+-------+---------------+-------------------------------+
exponent | ? | 0 | 1 | 2 | 3 |

+---+---+-------+---------------+-------------------------------+
| | | | | |
v v v v v v
-----------------------------------------------------------------

floats * **** * * * * * * * * * * * *
-----------------------------------------------------------------
^ ^ ^ ^ ^ ^
| | | | | |
0 | 2^-126 2^-125 2^-124 2^-123

|
2^-127
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Floating Point Representation: Denormalized

...while with subnormals, it looks like this:

+-------+-------+---------------+-------------------------------+
exponent | 0 | 1 | 2 | 3 |

+-------+-------+---------------+-------------------------------+
| | | | |
v v v v v
-----------------------------------------------------------------

floats * * * * * * * * * * * * * * * * *
-----------------------------------------------------------------
^ ^ ^ ^ ^ ^
| | | | | |
0 | 2^-126 2^-125 2^-124 2^-123

|
2^-127
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Floating Point Representation

the mantissa m can represent 223 different values

the exponent e can represent 254 different values (0 and 255 are not used for normalized
numbers)

the sign bit can be either 0 or 1

the zero is represented using e = 0

in total then we can represnt

2× 254× 223 + 1 = 4 261 412 865

numbers compared to a set dense, infinite and not limited of real numbers !

The set of numbers represented by the IEEE 754 format is NOT dense and it is is limited !

Arithmetic of computers is an approximation of real one.
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Floating Point Representation

the ranges of positive and negative numbers are not contigous there are gaps

within each range numbers are not uniformely ditributed, and the distance between big
numbers is larger than distance between small numbers, focusing the precision where it is
more necessary.

Example
x1 = 1 . 00000000000000000000000 · 2100 = 210010 e

x2 = 1 . 00000000000000000000001 · 2100 = 210010 + 2100−23
10 = 210010 + 27710

the distance is: δ = x2 − x1 = 210010 + 27710 − 210010 = 277 ≈ 1023

x1 = 1 . 00000000000000000000000 · 20 = 2010 = 110 e

x2 = 1 . 00000000000000000000001 · 20 = 2010 + 2−23
10

the distance is: δ = x2 − x1 = 2010 + 2−23
10 − 2010 = 2−23 ≈ 10−7

Base 10 - IEEE 754 converter: https://www.h-schmidt.net/FloatConverter/IEEE754.html
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Floating Point Representation
The IEEE 754 standard defines also double precision format utilizzando a N = 64 bit word
divided as following

1 sign bit

11 bits for the esponente

52 bits for the mantissa
It is also defined the standard for N = 128 bits that allows to have a preciosn four times better w.r.t.
the single precision. IN this case we have the sign bit, 15 bits of exponent and 112 bits for the
mantissa.
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Floating Point Representation
The figure below shows the absolute precision for both single- and double-precision formats over a
range of values
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Floating Point Representation

Practical Exercise:

We can use the float-distance.c example to print the the number of representable double precision
floating-point values in an interval:

g++ float-distance.cpp -o float-distance

Now, run the executable ./float-distance
Is the number of representable values the same for intervals of the same “size”?
Modify the code and try to let it show you other intervals; some of the interesting ones are
commented in the source code.

You can play trying several ranges...
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Floating Point Representation
Gerald Jay Sussman, Professor at MIT, once said:

“Nothing brings fear to my heart more than a floating point number.”

Practical Exercise:

We can use the commutative-sum.c example to understand why we should have the same fear:

g++ commutative-sum.cpp -o commutative-sum

This code is very simple, it just:
fills one array with a random uniform distribution of floating-point values;
copies this array in a second one;
sorts the values in the second array (but not in the first array);
sums togheter all the values of the first array;
sums togheter all the values of the second array;
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Floating Point Representation

Practical Exercise:

You can compile the code and run it, then try to answer to these questions:

Are the two results equal?
Is then the sum operation commutative?
How do you justify this?
Ok, at the end the error is not “so large”, why to worry?
What if the random values are in an interval larger than [-1,1]?
Modify the code and try larger intervals.
Do you feel the fear in your heart?
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Floating Point Representation
If you are not scared enough try also this:

Practical Exercise:
Have a look to the source code of the example my-math.c and then compile it with different flags:

gcc my-math.c -o my-math
gcc -O3 my-math.c -o my-optimized-math
gcc -Ofast my-math.c -o my-very-optimized-math

Running the different executables, are the results the same?
What have you done setting -Ofast?
Try: “man gcc” to find it out
Which one of the different flags activated by -Ofast is changing the result?
Try to activate each of them to find it out:
gcc -O3 -feachflag my-math.c -o my-custom-optimized-math
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Further references

David Goldberg, What Every Computer Scientist Should Know About Floating-Point
Arithmetic, March, 1991 issue of Computing Surveys.
John Farrier, Demystifying Floating Point CppCon 2015.
https://www.youtube.com/watch?v=k12BJGSc2Nc
An Interview with the Old Man of Floating-Point, Reminiscences elicited from William Kahan
by Charles Severance.
https://people.eecs.berkeley.edu/%7Ewkahan/ieee754status/754story.html
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