# NR and ER discrimination using ANN

#### Configuration used for the simulation and reconstruction

- Noise Run: 3944
- Detector : LIME
- Detector dimension : 33 cm x 33 cm x 50 cm
- Camera : Orca Fusion
- Pixel width: 0.152 mm
- Algorithm : Chan Vese
- Diffusion length: 0-50 cm
- Gas Mixture: He:CF4
- Pressure: 1 atm
- Digitization without saturation
- ER energies:[2,4,6,8,10,12,14,16,18,20,26,30,36,40] keV
- NR energies:[3,6,10,12,14,16,18,20,26,30,35,40] keV
  - o Energy deposited: [1.53, 3.7, 6.98, 8.7, 10.4, 12.3, 14.08, 15.92, 21.6, 25.37, 30.14, 34.98] keV

#### **Observables**

Observables for recoil identification in gas TPCs arXiv:2012.13649v1

Standard Deviation of Charge Distribution (SDCD):

$$SDCD = \sqrt{rac{\sum_{i=1}^{N} (\mathbf{r_i} - \overline{\mathbf{r}})^2}{N}}.$$

- Charge Uniformity (ChargeUnif):
  - For each point within the charge distribution, find the average distance to all other points.
  - ChargeUnif is standard deviation of values computed in step 1.
- Maximum Density (MaxDen):
  - MaxDen is the value of most intense pixel. (After rebinning)
- Cylindrical Thickness (CylThick):
  - For each charge , calculate the squared distance from the principal axis.
  - CylThick is the sum of all squared distances.



Source: Majd Ghrear presentation in Physics and Analysis meeting

#### Observables

- Length Along Principal Axis (LAPA):
  - Project all the points in the charge distribution on to the principal axis.
  - LAPA is the difference between maximum and minimum projected value.
- eta:
  - MaxDen divided by length (found by skeletonization)
- Light Density:
  - Ratio of sc\_integral over sc\_nhits
- Skeleton length (thin\_track):
  - Length in pixels found by thinning
- Slimness:
  - Ratio of sc\_width over sc\_length

GEM-based TPC with CCD Imaging for Directional Dark Matter Detection arXiv:1510.02170v3

## Reconstruction Efficiency



Reconstruction efficiency after 6 keV is 100%.

### **Energy Calibration and Resolution**





# Skeleton vs Energy and Thinning vs Energy





# SDCD vs Energy and CylThick vs Energy





#### LAPA vs Energy and MaxDen vs Energy





### nhits vs Energy and size vs Energy





# Integral vs Energy and Length vs Energy





#### Discrimination using patternnet



Inputs: skel\_track, SDCD, CylThick, LAPA, MaxDen, eta, sc\_size, sc\_nhits,

sc\_integral, sc\_length, delta, slimness

Output: NR, ER

# Discrimination at all energies [2-40 keV]

- All the variables shown earlier were given as input along with delta and slimness
- Pattern net with 3 hidden layers of size [10,10,10] neurons were used.
- Data division [90:5:5]
- Training algorithm
  - Scaled conjugate gradient
- Loss: Cross entropy



#### Discrimination at all energies





83.9%

16.1%

95.9%

4.1%

**Target Class** 

91.6%

8.4%

83.8%

16.2%

95.1%

4.9%

**Target Class** 

91.1%

8.9%

#### 6 keV ER discrimination from NR





# Delta







#### 6 keV ER discrimination from NR with delta only





#### Cut on delta and ROC curve





#### 6 keV ER discrimination from NR [2-40 keV]





