Source populations in the Extragalactic Radio Sky

Dr Catherine Hale

Leverhulme Trust Early Career Research Fellow

University of Edinburgh

LEVERHULME TRUST_____

Talk Overview

- Extragalactic Radio Source Populations
- Radio Surveys past, present and future
- Deep Radio Source Counts
- Using Multi-wavelength Information to investigate source populations
- Future work

NGC 6946

The HI Nearby Galaxy Survey (Walter+ 2008)

NGC 6946

Ian Heywood, MIGHTEE Collaboration, Heywood+ 2021

Credit: South African Radio Astronomy Observatory (SARAO)

Good for detecting rare sources e.g. giant radio galaxies

3.0 ADR 10⁵ 2.5 10⁴ Erequency [GHz] Area [sd deg] 10^3 10^2 Area P WLA 3GHZ MGHTEE _arg 10^{1} 0.5 Improved Sensitivity 10⁰ 10^{-4} 10-3 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} Equivalent 1σ sensitivity at 1.4 GHz [mJy/beam]

Good for detecting rare sources e.g. giant radio galaxies

Present/Future Large Area Surveys: LoTSS-DR2 (Shimwell+ 2022)

 $\delta \ge 0^{\circ}$ with LOFAR, 150 MHz, ~100 μ Jy/beam RMS Current: 5,600 deg², Final ~25,000 deg²

RACS (McConnell+ 2020, Hale+ 2021)

 $\delta \leq +40^\circ$ with ASKAP, 0.8-1.6 GHz, 0.25 mJy/beam RMS Current: 888 MHz, Final 0.8-1.6 GHz

EMU (Norris+ 2021)

 $\delta \le +30^{\circ}$ with ASKAP, ~1 GHz, ~30 μ Jy/beam RMS Current: 270 deg², Final ~30,000 deg²

VLASS (Lacy+ 2020)

 $\delta \ge -40^{\circ}$ with VLA, 3 GHz, ~70 μ Jy/beam RMS Current: 1 mJy/beam, Final ~70 μ Jy/beam RMS

3.0 ADR 10⁵ EMD 2.5 10⁴ SUMS LOTSDRZ deg] 10³ Area [sq 10² Area e WLA 3GHZ MIGHTEF Larg 10^{1} 0.5 Improved Sensitivity 10⁰ 10^{-4} 10-3 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} Equivalent 1σ sensitivity at 1.4 GHz [mJy/beam]

Good for detecting faint populations e.g. SFGs, RQQ, high z sources

Future Radio Facilities

Interesting Sources

Interesting Sources

Probing the Faint Extragalactic Source Populations

3.0 ADR 10⁵ EMD 2.5 10⁴ SUMS LOTSSDRZ 2.0 [ZH5] 10³ -1.5 10² Area e *NLA 3GHZ MIGHTEF Larg 10^{1} 0.5 Improved Sensitivity 10⁰ 10^{-4} 10-3 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2}

Equivalent 1σ sensitivity at 1.4 GHz [mJy/beam]

deg]

Area [sq

Good for detecting faint populations e.g. SFGs, RQQ, high z sources

Good for detecting faint populations e.g. SFGs, RQQ, high z sources

DEEP-2 with MeerKAT, 1.3 GHz, $^{2}\mu$ Jy/beam RMS

MIGHTEE (Jarvis+ 2017, Heywood+ 2021)

COSMOS, XMM-LSS, Elais-S1, E-CDFS with MeerKAT, 1.3 GHz, $^{2} \mu$ Jy/beam RMS

Credit: South African Radio Astronomy Observatory (SARAO)

Extragalactic Fields

+ COSMOS

Email: Catherine.Hale@ed.ac.uk

Extragalactic Populations: Source Counts

Extragalactic Source Counts: Raw

Create a range of simulations to account for these factors:

- Flux density distribution from simulations (Wilman+ 2008, Thomas+ 2021)
- Source size information (Wilman+ 2008)
- Clustering from hydrodynamical simualtions (Dave+ 2019, Thomas+ 2019)

Extragalactic Source Counts: Raw

Also see:

- Smolcic+ 2017
- Mauch+ 2020

- Matthews+ 2020

Deep Extragalactic Source Counts

Extragalactic Source Populations

Prescott+ in prep

Prescott+ in prep

Prescott+ in prep

Host Identification and Classification

Host Identification and Classification

Infrared-Radio Correlation

Host Identification and Classification

Whittam+ submitted

Whittam+ submitted

Source Classification

AGN Source Types

AGN Source Types

Whittam+ submitted

Source Classification

Extragalactic Source Counts and Sky Temperature

Extragalactic Source Counts and Sky Temperature

Deep Classified Extragalactic Source Counts

Sub-Threshold Sky Temperature Contribution

Detection of SFGs

Hale+ Submitted

Hale+ Submitted

Future of Deep Extragalactic Source Counts

Credit: Morabito et al. 2022, A&A, 658, A1

6.0"x6.0"

Credit: Morabito et al. 2022, A&A, 658, A1

Credit: Morabito et al. 2022, A&A, 658, A1

Allow even deeper imaging Easier comparison to multi-wavelength data

Summary

- Deep Extragalactic Surveys with e.g. MeerKAT, ASKAP, LOFAR are allowing us to probe to deeper and higher redshifts – leading to larger numbers of SFGs and faint AGN
- Combining with deep multi-wavelength data, we can trace SFG and AGN contribution to radio synchrotron background
- Tools such as stacking and P(D) allow us to go even below 5σ
- With SKAO precursors and the SKAO, this will revolutionise knowledge of faint extragalactic populations