#### Planck observations of the Galactic polarized synchrotron emission and Dark matter constraints

Manconi, Cuoco, Lesgourgues, ArXiv:2204.04232

#### Alessandro Cuoco



UNIVERSITÀ DEGLI STUDI DI TORINO Barolo, BAM June 17<sup>th</sup> 2022

#### Indirect Detection of Dark Matter: the General Framework

- 1) Dark Matter Annihilation Typical final states include heavy fermions, gauge or Higgs bosons
- 2) Fragmentation/Decay Annihilation products decay and/or fragment into some combination of electrons, protons, deuterium, neutrinos and gamma rays





Secondary dark matter radiation radio - microwave

# The ARCADE Excess



The observed extra-galactic radio background below 1 GHz is in excess w.r.t. the extrapolation from source counts. The excess could be due to radio emission from DM.

Fornengo, Lineros, Regis, Taoso, PRL 2011

# Radio emission in the Galaxy



In intensity at 30 GHz there is synchrotron free-free and spinning dust. In polarization at 30 GHz there is only synchrotron

### DM spectra



# DM distribution



DM distribution peaked at GC. Possible presence of clumps/substructures

# Galactic Magnetic Field

7.50

7.50

7.50

15.00

15.00

15.00

15.00



GMF has two components: Random and Regular

We use: Phshirkov et al. 2011 Sun et al. 2010 Jansson & Farrar 2012

Jaffe, Galaxies 7, 52 (2019)

### Synchrotron intensity and Polarization



The random component is typically dominant but does not produce Polarization, which is instead, only produced by the regular (and striated random) component

#### Jaffe, Galaxies 7, 52 (2019)

# **Cosmic-Ray Propagation**

Astrophysical Sources: •SNR or Pulsars

C

➢ Primary CRs: p, He, C, ... Interaction with ISM: •Fragmentation or production > Secondary CRs: p, Li, B, ... We use GALPROP to solve the propagation equation and derive the density of e+efrom DM at each point in the Galaxy.

We also use GALPROP to calculate the intensity and polarization synchrotron emission from DM e+e-

### All-sky Radio Intensity emission



The all-sky radio intensity is well-measured in a wide range of frequencies. Zheng, Tegmark+, arXiv:1605.04920

#### Planck Intensity and Polarization maps



Updated all-sky radio polarization data are available from Planck measuremnets.

We use these measurements to derive conservative DM constraints requiring that the DM signal does not exceed the observed emission

# DM maps



DM intensity (left) and Polarization (right) maps at 30 GHz for  $m_{DM}$ =50 GeV annihilating into  $\mu$ + $\mu$ -. Sun+10 GMF (upper row) and JF12 GMF (lower row)

# DM constraints



Polarization constraints are a factor 5-10 stronger than intensity constraints.

In the future, with a more "aggressive" approach modeling the backgrouns the constraints should be further improvable by a factor of a few

## More DM Channels



Constraints for all 3 channels considered

# Systematics



- Constraints variations for different GMF (left) and different CR propagation models (right), for bbar channel.
- Intrinsically, there is a factor 10 systematic. But polarization is always consistently more constraining than intensity

# Why P is more constraining?



DM signal at 30 GHz fights against a lower background in polarization w.r.t. intensity

## Data/Model ratio



Ratio of data/model for intensity(left) and polarization (right). For intensity the best sensitivity is reached ~10 deg away from the Plane, while for polarization is closer due to some filament of low background which expends close to the GP.

# Summary and Conclusions

- A new observable for DM: Radio polarization!
- More sensitive than Radio intensity by a factor 5-10!
- Systematics due to the Galactic Magnetic field need to be improved
- Stonger constraints expected when modeling the backgrounds

# Backup

# **Cosmic-Ray Propagation**

 $\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi$ 

$$-\frac{\partial}{\partial p}\left(\frac{\mathrm{d}p}{\mathrm{d}t}\psi-\frac{p}{3}\boldsymbol{\nabla}\cdot\boldsymbol{V}\psi\right)-\frac{1}{\tau_f}\psi-\frac{1}{\tau_r}\psi$$



Diffusion equation is typically solved fully numerically with GALPROP or Dragon, or semianalytically with Usine.