Characterization of the Diffuse Radio Sky with **EDGES** and **MIST**

Radio Synchrotron Background Workshop 17 June 2022

EDGES Global 21-cm Experiment

Absolute Calibration of Low-Frequency Diffuse Maps

$$M_C = k_1 \times M + k_2$$

Monsalve at al. (2021)

45-MHz Map: Guzmán et al. (2021)

150-MHz Map: Landecker and Wielebinski (1970)

45-MHz Map

Monsalve at al. (2021)

150-MHz Map

Monsalve at al. (2021)

Linear Fits

At each frequency fitting 2 data sets simultaneously

Uncertainties of Results

=

Uncertainty of Linear Fit Parameters

Systematic:

- Choice of Data sets
- Instrument Calibration
- Ionosphere

Uncertainty of Corrected Maps

Uncertainty
of Linear Fit
Parameters

quadrature

+

RMS of Fit Residuals Results

Linear Fit Parameters

<u>45-MHz Map</u> Guzmán et al. (2021)				<u>150-MHz Map</u> Landecker and Wielebinski (1970)		
k_2	-160K	<u>+</u>	78K (2 σ)	+0.7K	\pm	6K (2 <i>σ</i>)

Map Brightness Temperature at $(l, b) = (+190^{\circ}, +50^{\circ})$

<u>45-MHz Map</u>			150-MHz Map		
	<u>Guzmán</u>	<u>et al. (2021)</u>	Landecker and Wielebinski (1970)		
Original	3326K	<u>+</u> > 333K	148.9K <u>+</u> >41K		
This Work	3419K	\pm 255K (2 σ)	166.3K \pm 14.3K (2 σ)		

Monsalve at al. (2021)

159-MHz Map from Kriele et al. (2022)

SKA Prototype Station: Engineering Development Array 2 (EDA2) Located at Murchison Radioastronomy Observatory (MRO) 256-element interferometer 3^o resolution

Wayth et al. (2021)

159-MHz Map from Kriele et al. (2022)

EDA2 only

159-MHz Map from Kriele et al. (2022)

EDA2 + Scaled Haslam

High-Band **BLADE** Dipole

Mid-Band **BLADE** Dipole

High-Band FOURPOINT Dipole

EGG

Char The

N.T.

Absolute Calibration of 159-MHz Map

Monsalve at al. (in prep)

Diffuse Radio Recombination Lines (RRLs)

Expected frequencies for $C\alpha$ lines

Stacked Analysis

380 days 2-h LST bins +/- 100 kHz windows

GHA 00 / LST 17.8

0.2

0.0 T_{RRL} (K) -0.2 -0.4 -0.6 -0.8 GHA 06 / LST 23.8 GHA 08 / LST 1.8 GHA 10 / LST 3.8 0.2 0.0 T_{RRL} (K) -0.2 -0.4 100 Relative Frequency (kHz) Relative Frequency (kHz) Relative Frequency (kHz)

GHA 02 / LST 19.8

GHA 04 / LST 21.8

Bowman et al (in prep)

50

0

Relative Frequency (kHz)

-100

100

-50

0

50

-100

-50

MIST Global 21-cm Experiment

Mapper of the IGM Spin Temperature (MIST)

Experiment began in 2018

Government

of Canada

Canadian Space Agency

Standard Prediction for Global 21-cm Signal

Mapper of the IGM Spin Temperature (MIST)

Instruments:

- 2 x single-antenna total-power radiometers
- Wideband **dipole** and **monopole** antennas
- Antennas directly above ground without metal ground plane
- Field measurements of **spectra** and **reflection coefficients** of **antenna** and **LNA**
- High portability for deployment at remote locations
- Low power consumption (~ 15 watts)
- Powered only by batteries

Main analysis steps:

- Excision of data with radio-frequency interference
- **Relative spectral calibration** using field measurements of internal standards
- Absolute calibration using laboratory measurements of external standards
- Removal of ground and balun loss

Instrument

Digital Back-End

Analog Front-End

Plans for Canadian Arctic in July 2022

The McGill Arctic Research Station

Measured in 2019 10.0 Low freq roll-off from antenna 9.8 9.6 9.4 9.2 -No persistent FM features! 9.0 8.8 8.6 Shortwave floor at <20 MHz (during Arctic summer...) 8.4 20 40 80 100 120 0 60 Freq (MHz)

Credit: H. Cynthia Chiang

Test Field Measurements Done in May 2022

Death Valley

Death Valley

Shania Twain – That Don't Impress Me Much

ZZ Top – I Gotsta Get Paid

ZZ Top – I Gotsta Get Paid

ZZ Top – I Gotsta Get Paid

Death Valley

Death Valley

Soil Antenna

Soil Resistivity Meter

Soil Resistivity Meter

-

and the spectrum and

Cos)

Determination of Soil Layers

Other Soil-Characterization Efforts

Building 64-electrode soil resistivity meter for 3D tomography

Sky Blockage by Mountains

SHAPES code (Neil Bassett et al. 2021)

Dipole Observations – Death Valley

Reflection Coefficients

Balun and Ground Loss for Dipole Antenna

Dipole Observations – Death Valley

Dipole Observations – Death Valley

Summary

- 1) With EDGES, provided absolute calibration to 45- and 150-MHz diffuse maps.
- 2) With EDGES, calibrating 159-MHz map.
- 3) With **EDGES**, **detected RRLs**, including at high Galactic latitudes.
- 4) With **MIST**, starting to produce **high-quality data** to study the radio sky.