Jack Singal University of Richmond, USA BAM RSB Workshop Barolo, Italy June 15, 2022

Overview and New Measurements

Light in the Universe

All the Light in the Universe

- All the light we receive from the Universe in a particular waveband

All the Light in the Universe

These photon backgrounds all:

- Are at least roughly consistent with predicted the total emission of known source classes
- Have been resolved into the source class components when possible
- Have anisotropies which trace the large-scale distribution of optical sources in the universe

All the Light in the Universe

None of these are true of the Radio Synchrotron Background!

These photon backgrounds all:

- Are at least roughly consistent with predicted the total emission of known source classes
- Have been resolved into the source class components when possible
- Have anisotropies which trace the large-scale distribution of optical sources in the universe

RSB!

None of these are true of the Radio Synchrotron Background!

This is an interesting problem!

Reminder: RSB Level

Reminder: RSB Level

Available measurements have reported a high radio background level

Known source classes added up give only ~1/5 of the claimed radio background level

J. Condon et al., 2012, *ApJ*, 758, 23 T. Vernstrom et al., 2014, *MNRAS*, 440, 2791 M. Hardcastle et al., 2021, *A*&A, 648, 10

Would need huge (!) # of low flux sources to make this brightness!

Reminder: RSB Level

It is tough to stuff into a giant Galactic halo

- Other nearby edge-on spiral galaxies do not show bright spherical halo morphology
- Overall Galactic emission structure is well-fit by simple csc|b| model
- Corelates of galactic radio emission such as 158 µm C+ line suggest low level at poles

A Tale of Two Meetings

1st RSB Workshop

1st RSB Workshop

Publications of the Astronomical Society of the Pacific, 130:036001 (21pp), 2018 March © 2018. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A.

https://doi.org/10.1088/1538-3873/aaa6b0

The Radio Synchrotron Background: Conference Summary and Report

J. Singal¹, J. Haider¹, M. Ajello², D. R. Ballantyne³, E. Bunn¹, J. Condon⁴, J. Dowell⁵, D. Fixsen⁶, N. Fornengo⁷, B. Harms⁸, G. Holder⁹, E. Jones¹, K. Kellermann⁴, A. Kogut⁶, T. Linden¹⁰, R. Monsalve^{11,12,13}, P. Mertsch¹⁴, E. Murphy⁴, E. Orlando¹⁵, M. Regis⁷, D. Scott¹⁶, T. Vernstrom¹⁷, and L. Xu¹⁶

The workshop reached a strong consensus on the importance of having at least one new, purpose-built, absolutely calibrated zero-level measurement to confirm (or dispute) the level of the radio synchrotron background obtained from ARCADE 2 and the low frequency radio surveys. The options for such a measurement can be broadly classified into the following categories:

> (2) A measurement at around 300 MHz, consisting of a purpose-built receiver mounted on the Green Bank Telescope, which features an unblocked aperture. At this frequency the effect of tropospheric water vapor fluctuations is not important and the location in the National Radio Quiet Zone provides protection against radio frequency interference. Such a setup would only take a

Previous Barolo Astroparticle Meeting

2-5 September 2018 *Barolo* Europe/Rome timezone

Barolo Astroparticle Meeting 2-5 September 2018

Discussions came up with the idea of using LOFAR to measure the anisotropy of the RSB

New Measurements to talk about

1) 310 MHz Absolute Map (in progress)

2) Arcminute scale anisotropy power spectrum at 140 MHz (done)

310 MHz Absolute Map

Haslam Map - 1980s (> 1000 citations)

Resolution (~1 deg) is such that these temperature levels are due to the integrated surface brightness of many sources and/or a diffuse glow from the Galaxy

Table 1: All Relatively Recent Radio Maps Reporting an Absolute Zero-Level Calibration

Frequency (MHz)	Map	Instrument	Source of Absolute Zero-Level Calibration
22	Roger et al. (1999)	Dipoles above	Scaling relative to 408 MHz Haslam et al. (1982)
		reflecting screen	map at Zenith applied to other elevations
45	Maeda et al. (1999)	Phased array	Overlap with Alvarez et al. (1997), itself based
		Yagi dipoles	on small region overlap with unspecified pedigree
40,50,60,70,80	Dowell & Taylor (2018)	240 dipole array	Flux calibrator sources
		with synthesized beam	and instrument gain modeling
408	Haslam et al. (1982)	Jodrell Bank 75 m	Overlap with blocked-aperture, 7.5° resolution dipole
		clear aperture dish	measurement of Pauliny-Toth & Shakeshaft (1962)
1420	Reich & Reich (1986)	Stockert 25 m	Small overlap with wide beam horn-based
		blocked aperture dish	measurment of Howell & Shakeshaft (1966)
2300	Tello et al. (2013)	blocked aperture dish	Total power radiometer
			calibrated with observations of moon
2326	Jonas et al. (1998)	HartRAO 26 m	Small overlap with horn-based south celestial
		blocked aperture dish	pole measurement of Bersanelli et al. (1994)

Bare Dipoles?

 \rightarrow Large sidelobes coupling extra radiation from other places than the intended place on the sky

- Bright Galactic plane
- Ground
- Anything else

Brighter than or of comparable brightness to what we are trying to measure

Blocked Aperture Dishes?

 \rightarrow Reflections and emissions off of giant structures right in the beam

• How much of the signal is actually from the intended point on the sky?

Flux calibrators and gain modeling?

Use a bright source(s) that has been measured well and interpolate / extrapolate a function for output vs. brightness

- Is the instrument gain linear over orders of magnitude in brightness?
- Does the bright source observation include the (unknown) amount of diffuse background

We don't actually know (confidently) the level of diffuse radio emission in the universe

Table 1: All Relatively Recent Radio Maps Reporting an Absolute Zero-Level Calibration

Frequency (MHz)	Map	Instrument	Source of Absolute Zero-Level Calibration
22	Roger et al. (1999)	Dipoles above	Scaling relative to 408 MHz Haslam et al. (1982)
		reflecting screen	map at Zenith applied to other elevations
45	Maeda et al. (1999)	Phased array	Overlap with Alvarez et al. (1997), itself based
		Yagi dipoles	on small region overlap with unspecified pedigree
40,50,60,70,80	Dowell & Taylor (2018)	240 dipole array	Flux calibrator sources
		with synthesized beam	and instrument gain modeling
408	Haslam et al. (1982)	Jodrell Bank 75 m	Overlap with blocked-aperture, 7.5° resolution dipole
		clear aperture dish	measurement of Pauliny-Toth & Shakeshaft (1962)
1420	Reich & Reich (1986)	Stockert 25 m	Small overlap with wide beam horn-based
		blocked aperture dish	measurment of Howell & Shakeshaft (1966)
2300	Tello et al. (2013)	blocked aperture dish	Total power radiometer
			calibrated with observations of moon
2326	Jonas et al. (1998)	HartRAO 26 m	Small overlap with horn-based south celestial
		blocked aperture dish	pole measurement of Bersanelli et al. (1994)

- Absolute zero-level calibration not a primary goal of these measurements
- These measurements are (mostly) old and/or rely on old ones

Absolute Maps - Extremely Important

The Haslam all-sky survey 408 MHz from the 1980s is *still* the gold standard - Cited over 1000 times and citation rate is *increasing*

Important for understanding and constraining almost all Galactic and extragalactic phenomena that manifest in diffuse radio emission

Examples (not exhaustive):

- cosmic ray propagation (e.g. Orlando & Strong 2013; Orlando 2017)
- magnetic field structures (e.g. Sun et al. 2008)
- supernova remnant and pulsar searches (e.g. Surnis et al. 2018; Bhat et al. 2018)
- composition of the interstellar medium (e.g. Nguyen et al. 2018)
- finer scale radio structure (e.g. Mertsch & Sarkar 2013)
- tracers for Galactic phenomena at other wavelengths (e.g. Kogut et al. 2011)
- cosmic microwave background (CMB) studies (e.g. Adam et al. 2016)
- 21-cm cosmology (e.g. Bowman et al. 2018)
- Constraints on the radio synchrotron background (e.g. Singal et al. 2018)

Absolute Maps - Extremely Important

Case study: CMB foregrounds

"... Lack of robustness with respect to systematics; any systematic error that may be present in the 408 MHz and 857-2 channels can and will propagate into the respective foreground amplitude maps. In order to improve on this situation in the future... incorporating additional low-frequency observations is critical."

(Planck 2015 Results. X. Adam et al 2016, *A&A*, 594, A10, "Diffuse component separation: Foreground maps")

Absolute Maps - Extremely Important

Case study: 21-cm foregrounds and interpretation

"Broadband foreground sources are expected to be roughly four orders of magnitude larger than any cosmological signals, so precise foreground models will be necessary"

- Liu & Tegmark, 2012, MNRAS, 419, 3491

Can we make a new, modern, believable, absolutely calibrated radio map?

The Green Bank Telescope

- World's largest clear aperture telescope
- Located in rural West Virginia in National Radio Quiet Zone
- Could be utilized for absolute map if done properly

 Custom antenna ("feed") to "underilluminate" (less power spilling over the edge of the dish to the ground)

2) Custom absolutely calibrated receiver designed for this purpose

3) Scans in circles of constant elevation of
38° to pass through unchanging NCP every
15 minutes

Tip scans up and down to estimate residual ground pickup and get lower elevations

Do this in ~every month to map entire sky (north of -48° dec)

Approved for 24 hours of observing in October to make preliminary porous map Will involve mount and demount of custom antenna, front-end box, etc...

Will propose for 162 hours of observing in 12 sessions for full-sky map

<u>UR</u> Jack Singal

NRAO CDL:

Rich Bradley Sivasankaran Srikanth Bang Nhan Krishna Makhija David Bordenave

NRAO Jansky Lab:

Jim Condon Ken Kellermann Eric Murphy

<u>Green Bank Observatory</u>: Chris Salter

More to come in David's Talk!

LOFAR Anisotropy Measurement

LOFAR Anisotropy Measurement

LOFAR Anisotropy Measurement

The anisotropy on arcminute scales is weird...

