

Istituto Nazionale di Fisica Nucleare

R&D Muon detector

C. AIMÈ^{1,2}, D. FIORINA^{1,2}, C. RICCARDI^{1,2}, P. SALVINI^{1,2}, N. VALLE^{1,2}, <u>I.VAI^{1,3}</u>, P.VITULO^{1,2}

¹INFN SEZIONE DI PAVIA ²UNIVERSITÀ DI PAVIA ³UNIVERSITÀ DI BERGAMO

Muon system @muon collider experiment

	radius [mm]	z [mm]	layers	sensor area $[\mathrm{m}^2]$
Barrel	4461 < r < 6450	< 4179	7	1942
Endcap	446 < r < 6450	$4179 < \mathbf{z} < 5700$	6	1547

<u>Return yoke</u>: 8 iron slabs di 24.4 cm nel barrel e 7 slabs di 19.7 cm nell'endcap

<u>Campo magnetico</u>:

- 1.34 T nel barrel
- 0.01 T nell'endcap

<u>Sistema a muoni (ILCSoft - CLIC) equipaggiato con:</u>

- 7 layers di rivelatori nel barrel
- 6 layers nell'endcap

Beam Induced Background

BIB Energy distribution - Neutrons vs θ

Distribuzioni ottenute da simulazione MARS+Geant4+<u>v02-05-MC</u> selezionando le particelle che arrivano nel sistema a muoni Beam Induced Background (BIB) nel sistema a muoni è prevelentemente composto da neutroni e fotoni.

Nelle regioni più interne, il flusso è circa 3 ordini di grandezza maggiore che all'esterno.

 $A\sqrt{s} = 1.5 TeV:$

- Neutroni: energie fino a 2.5 GeV
- Fotoni: energie fino a 200 MeV

Tecnologie per il muon system

Rivelatore	σ_t	σ_x	Rate capability
RPC (HPL o Glass)	1 ns (single-gap) < 100 ps (multi-gap)	~mm	∼ 1 kHz/cm ²
Standard MPGD (GEM, Micromegas)	5-10 ns	~100 µm	> 100 kHz/cm ²

Goal: sviluppare un rivelatore che permetta di raggiungere ottime performance su tutti e 3 gli item

 \rightarrow <u>utilizzo per il muon collider come:</u>

• Rivelatore completo per il muon system, sfruttando σ_t , σ_x e rate capability

oppure

• Timing layer dedicato, da combinare con un layer di rivelatori per tracking

R&D prototipo PicoSec

https://gdd.web.cern.ch/activities-picosec

- Attività finora svolta da RD51 + gruppi da Grecia, Francia, Spagna, Portogallo e China.
- No coinvolgimento INFN fino ad ora.
- R&D del rivelatore non incluso in finanziamenti AIDAInnova (solo partecipazione di RD51 a WP relativo al DAQ)

Nuovo MPGD composto da:

- Convertitore Cherenkov (3-4 mm) di MgF₂
- Fotocatodo (10 nm), attualmente di Csl
- Standard Micromegas con gap di drift di spessore ridotto

→ Risoluzione temporale misurata ~ 25 ps (Ne/C₂H₆/Cf₄ - 80/10/10)

R&D prototipo PicoSec

https://gdd.web.cern.ch/activities-picosec

- *Stato attuale*: R&D a livello di prototipi, non ancora declinato ad una applicazione specifica.
- R&D necessario su: fotocatodo (CsI o altro materiale), spessore convertitore, large size, miscela di gas, schema readout, ecc..

Interessante perché essendo un MPGD può affiancare alla risoluzione temporale anche un'ottima risoluzione spaziale e rate capability (vantaggio rispetto a RPC).

Sensitività

RD-MUCOLL INFN PAVIA

Stima dell'hit rate attesa

RD-MUCOLL INFN PAVIA

Piano dei test

• Risultati delle simulazioni svolte nel 2021 già discussi con membri della collaborazione RD51.

- Piano di test da svolgere con un nuovo prototipo nel 2022 concordato con RD51:
 - Misura di carica
 - Risposta al singolo fotoelettrone usando un Led UV o un fotodiodo
 - Misure con i cosmici usando il MCP-PMT per il timing

Richieste

Item	Richiesta	Categoria
Prototipo completo	12 kE	Consumo
Fast Timing MCP-PMT detector	8 kE	Inventariabile

Stima preliminare delle tempistiche:

- Entro maggio 2022: produzione prototipo
- Maggio-settembre 2022: caratterizzazione prototipo
- Settembre-dicembre 2022: test con cosmici

Dettagli del prototipo

Il prototipo di base è costituito da una micromegas con gap di drift di spessore ridotto (fino a 200 um); sopra al rivelatore sono posizionati un fotocatodo - attualmente di CsI - e un radiatore cherenkov di 3-4 mm. I costi stimati delle varie componenti sono i seguenti:

• Radiatore cherenkov:

- 100x100 mm², spessore 3 mm \rightarrow 2 kE
- Picosec micromegas:
 - 100x100 mm², 100 pads → 6 kE
- Detector cage + connectors \rightarrow 4 kE

Per un totale di circa 12 kE per un prototipo completo 10x10 cm²

Per svolgere tali test si prevede l'acquisto di un Micro Channel Plate - PhotoMultiplier (MCP-PMT), necessario per ottenere misure di risoluzione temporale con cosmici dell'ordine della decina di ps. Modelli con le caratteristiche necessarie (150 ps time resolution e 10 mm active area) sono disponibili in commercio, con un costo indicativo di 8 kE + IVA.

Backup

GRPC Geometry

"AluminumT1","AirT1",	1*mm,3.5*mm,	//Aluminum + Air
"PyrexGlassT1",	2*mm,	//Pirex Glass
"GasGap1",	2*mm,	//GasGap1
"PyrexGlassB1",	2*mm,	//Pirex Glass
"AirB1","AluminumB1",	3.5*mm,1*mm,	//Aluminum + Air
"AluminumT2","AirT2",	1*mm,3.5*mm,	//Aluminum + Air
"PyrexGlassT2",	2*mm,	//PirexGlass
"GasGap2",	2*mm,	//GasGap2
"PyrexGlassB2",	2*mm,	//PirexGlass
"AirB2","AluminumB2",	3.5*mm,1*mm,	//Aluminum + Air

- Geometry as it is currently implemented in MuCollv1
- Dominant materials are:
 - Aluminum
 - Pyrex Glass = SiO_2 (80.6%) + B_2O_3 (13%) + Na_2O (4%) + Al_2O_3 (2.3%)
- Gas: isobutane (4.5%) + C₂H₂F₄ (95.2%) + SF₆ (0.3%)

PicoSec Geometry

https://arxiv.org/pdf/1901.03355.pdf

"Radiator",	3*mm,	//Cherenkov radiator
"Photocathode",	20*nm,	//Photocathode
"PCSupport",	10*nm,	//PC Support
"GasGap1",	200.*um,	//Drift Gap
"Mesh",	8.*um,	//Mesh
"GasGap2",	128*um,	//Transfer I Gap
"ReadCopper1","ReadoutBoard"	35.*um,3.2*mm,	//Readout Board

- Prototype geometry
- Dominant materials are:
 - Cherenkov Radiator = MgF₂
 - Need to understand from interaction position study which are the more relevant materials (photocathode is CsI, PC support is Cr, Mesh is Al...)
- Gas: Ne (80%) + C_2H_6 (10%) + CF_4 (10%)