

R&D Muon detector

C. AIMÈ 1,2 , D. FIORINA 1,2 , C. RICCARDI 1,2 , P. SALVINI 1,2 , N. VALLE 1,2 , I.VAI 1,3 , P.VITULO 1,2

¹INFN SEZIONE DI PAVIA ²UNIVERSITÀ DI PAVIA ³UNIVERSITÀ DI BERGAMO

Muon system @muon collider experiment

	radius [mm]	z [mm]	layers	sensor area $[\mathrm{m}^2]$
Barrel	4461 < r < 6450	< 4179	7	1942
Endcap	446 < r < 6450	$4179 < \mathbf{z} < 5700$	6	1547

Return yoke: 8 iron slabs di 24.4 cm nel barrel e 7 slabs di 19.7 cm nell'endcap

<u>Campo magnetico</u>:

- 1.34 Tinel barrel
- 0.01 T nell'endcap

<u>Sistema a muoni (ILCSoft - CLIC) equipaggiato con:</u>

- 7 layers di rivelatori nel barrel
- 6 layers nell'endcap

Beam Induced Background

Distribuzioni ottenute da simulazione MARS+Geant4+<u>v02-05-MC</u> selezionando le particelle che arrivano nel sistema a muoni

Beam Induced Background (BIB) nel sistema a muoni è prevelentemente composto da neutroni e fotoni.

Nelle regioni più interne, il flusso è circa 3 ordini di grandezza maggiore che all'esterno.

BIB Energy distribution - Photons vs θ

$$A\sqrt{s}=1.5 TeV$$
:

- Neutroni: energie fino a 2.5
 GeV
- Fotoni: energie fino a 200 MeV

Tecnologie per il muon system

Rivelatore	σ_t	σ_{χ}	Rate capability
RPC (HPL o Glass)	1 ns (single-gap) < 100 ps (multi-gap)	~mm	~ 1 kHz/cm ²
Standard MPGD (GEM, Micromegas)	5-10 ns	~100 µm	> 100 kHz/cm ²

Goal: sviluppare un rivelatore che permetta di raggiungere ottime performance su tutti e 3 gli item

- → <u>utilizzo per il muon collider come:</u>
- Privelatore completo per il muon system, sfruttando σ_t , σ_x e rate capability oppure
- Timing layer dedicato, da combinare con un layer di rivelatori per tracking

R&D prototipo PicoSec

https://gdd.web.cern.ch/activities-picosec

Nuovo MPGD composto da:

- Convertitore Cherenkov (3-4 mm) di MgF₂
- Fotocatodo (10 nm), attualmente di CsI
- Standard Micromegas con gap di drift di spessore ridotto
- \rightarrow Risoluzione temporale misurata \sim 25 ps (Ne/C₂H₆/Cf₄ 80/10/10)

- Attività finora svolta da RD51 + gruppi da Grecia, Francia, Spagna, Portogallo e China.
- No coinvolgimento INFN fino ad ora.
- R&D del rivelatore non incluso in finanziamenti AIDAInnova (solo partecipazione di RD51 a WP relativo al DAQ)

R&D prototipo PicoSec

https://gdd.web.cern.ch/activities-picosec

- Stato attuale: R&D a livello di prototipi, non ancora declinato ad una applicazione specifica.
- R&D necessario su: fotocatodo (CsI o altro materiale), spessore convertitore, large size, miscela di gas, schema readout, ecc..

Interessante perché essendo un MPGD può affiancare alla risoluzione temporale anche un'ottima risoluzione spaziale e rate capability (vantaggio rispetto a RPC).

Sensitività

Attività svolta nel 2021: simulazione standalone Geant4 (Geant4.10.06 p02)per studiare risposta dei rivelatori al BIB @ 1.5 TeV.

Confronto tra varie tecnologie:

- Double-gap Glass RPC
- Double-gap HPL RPC
- Triple-GEM
- PicoSec

Muon Collider 1.5 TeV - Neutron Sensitivity

Muon Collider 1.5 TeV - Photon Sensitivity

Sensitività PicoSec minore di quella degli RPC perché MPGD con material budget minore.

Energy [MeV]

Stima dell'hit rate attesa

Attività svolta nel 2021: simulazione standalone Geant4 (Geant4.10.06 p02)per studiare risposta dei rivelatori al BIB @ 1.5 TeV.

Hit Rate = Sensitività × Flusso BIB

- → PicoSec ha rate attesa minore delle RPC (perché sensitività è minore)
- → Rate attesa RPC è al limite dell'attuale tecnologia

Muon Collider 1.5 TeV - Neutron Hit Rate vs θ

Muon Collider 1.5 TeV - Photon Hit Rate vs θ

Risultati presentati a EPS-HEP2021: https://indico.desy.de/event/28202/contributions/105657/

Piano dei test

- Risultati delle simulazioni svolte nel 2021 già discussi con membri della collaborazione RD51.
- Piano di test da svolgere con un nuovo prototipo nel 2022 concordato con RD51:
 - Misura di carica
 - Risposta al singolo fotoelettrone usando un Led UV o un fotodiodo
 - Misure con i cosmici usando il MCP-PMT per il timing

Richieste

Item	Richiesta	Categoria
Prototipo completo	12 kE	Consumo
Fast Timing MCP-PMT detector	8 kE	Inventariabile

Stima preliminare delle tempistiche:

- Entro maggio 2022: produzione prototipo
- Maggio-settembre 2022: caratterizzazione prototipo
- Settembre-dicembre 2022: test con cosmici

Dettagli del prototipo

Il prototipo di base è costituito da una micromegas con gap di drift di spessore ridotto (fino a 200 um); sopra al rivelatore sono posizionati un fotocatodo - attualmente di CsI - e un radiatore cherenkov di 3-4 mm. I costi stimati delle varie componenti sono i seguenti:

- Radiatore cherenkov:
 - $100x100 \text{ mm}^2$, spessore 3 mm \rightarrow 2 kE
- Picosec micromegas:
 - $100x100 \text{ mm}^2$, $100 \text{ pads } \rightarrow 6 \text{ kE}$
- Detector cage + connectors → 4 kE

Per un totale di circa 12 kE per un prototipo completo 10x10 cm²

Per svolgere tali test si prevede l'acquisto di un **Micro Channel Plate - PhotoMultiplier (MCP-PMT)**, necessario per ottenere misure di risoluzione temporale con cosmici dell'ordine della decina di ps. Modelli con le caratteristiche necessarie (150 ps time resolution e 10 mm active area) sono disponibili in commercio, con un costo indicativo di **8 kE + IVA**.

Backup

GRPC Geometry

```
"AluminumT1", "AirT1",
"PyrexGlassT1",
"GasGap1",
"PyrexGlassB1",
"AirB1", "AluminumB1",
"AluminumT2", "AirT2",
"PyrexGlassT2",
"GasGap2",
"PyrexGlassB2",
"AirB2", "AluminumB2",
```

```
1*mm,3.5*mm,
                                     //Aluminum + Air
2×mm,
                                     //Pirex Glass
2×mm,
                                     //GasGap1
2×mm,
                                     //Pirex Glass
3.5 \times mm.1 \times mm.
                                     //Aluminum + Air
1*mm,3.5*mm,
                                     //Aluminum + Air
2*mm,
                                     //PirexGlass
                                     //GasGap2
                                     //PirexGlass
                                     //Aluminum + Air
```

- Geometry as it is currently implemented in MuCollv1
- Dominant materials are:
 - Aluminum
 - Pyrex Glass = SiO_2 (80.6%) + B_2O_3 (13%) + Na_2O (4%) + Al_2O_3 (2.3%)
- Gas: isobutane $(4.5\%) + C_2H_2F_4 (95.2\%) + SF_6 (0.3\%)$

PicoSec Geometry

https://arxiv.org/pdf/1901.03355.pdf

```
"Radiator",
                                         3×mm,
                                                                         //Cherenkov radiator
"Photocathode",
                                         20*nm.
                                                                         //Photocathode
"PCSupport",
                                         10*nm.
                                                                         //PC Support
"GasGap1",
                                         200.*um.
                                                                         //Brift Gap
"Mesh",
                                         8.*um.
                                                                         //Mesh
"GasGap2",
                                         128*um.
                                                                         //Transfer I Gap
"ReadCopper1", "ReadoutBoard"
                                         35.*um, 3.2*mm,
                                                                         //Readout Board
```

- Prototype geometry
- Dominant materials are:
 - Cherenkov Radiator = MgF₂
 - Need to understand from interaction position study which are the more relevant materials (photocathode is CsI, PC support is Cr, Mesh is Al...)
- Gas: Ne (80%) + C_2H_6 (10%) + CF_4 (10%)