# 4D particle tracking with Resistive AC-Coupled Silicon Detectors (RSD)

### Marco Mandurrino

marco.mandurrino@to.infn.it

# From LGAD to RSD

- To get rid of the dead area between pixels, as in standard LGADs, we implemented a new readout paradigm: the Resistive AC-Coupled Silicon Detector technology
- In RSD the readout is analogic, and no more binary, with bipolar signals
- RSD benefit from the good timing performances proper of LGADs, but with an increased capability to track particles in space: they are suitable for 4D tracking
- ► 100% fill-factor and analogic readout make possible to reconstruct the hit position with a precision ~2 orders of magnitude lower than the pad pitch





# Development timeline

- The Resistive AC-Coupled Silicon Detector technology was first proposed for a proof of princicle in the CSN5 grant called RSD (PI: M. Mandurrino), in strong synergy with the UFSD project in Torino
- ► First production submitted Jan 2019
- Promising results and indication from RSD1
- ► Moreover, all the main signal properties are conserved in large-area RSD detectors
- ► Second production submitted end of 2020
- ► What is missing? electrical tests at FBK, not yet arrived in Torino
- Why perfect for Muon Collider?

# The first production: RSD1

## Production layout and technological splits

| wafer # | <i>n</i> -plus dose | <i>p</i> -gain dose | diel. thickness | substrate |
|---------|---------------------|---------------------|-----------------|-----------|
| 1       | В                   | 0.92                | Low             | FZ        |
| 2       | В                   | 0.94                | Low             | FZ        |
| 3       | В                   | 0.94                | Low             | Ері       |
| 4       | В                   | 0.94                | High            | FZ        |
| 5       | В                   | 0.96                | High            | FZ        |
| 6       | С                   | 0.92                | Low             | Ері       |
| 7       | С                   | 0.94                | Low             | FZ        |
| 8       | С                   | 0.94                | Low             | FZ        |
| 9       | С                   | 0.96                | Low             | FZ        |
| 10      | С                   | 0.96                | High            | FZ        |
| 11      | D                   | 0.92                | Low             | FZ        |
| 12      | D                   | 0.94                | Low             | Ері       |
| 13      | D                   | 0.94                | Low             | FZ        |
| 14      | D                   | 0.96                | High            | Ері       |
| 15      | D                   | 0.96                | High            | FZ        |

Split table of parameters implemented in RSD1 (2019)





# RSD and 4D-tracking – RSD1



#### Correlation between hit position and signal amplitude/delay

#### Laser measurements

The space/time resolution increase at high gain and small pad pitch/size

| RSD1    | Gain 12                        |                 | Gain 17                    |                 | Gain 24                    |                          |
|---------|--------------------------------|-----------------|----------------------------|-----------------|----------------------------|--------------------------|
|         | $\sigma_x \; [\mu \mathrm{m}]$ | $\sigma_t$ [ps] | $\sigma_x \; [\mu { m m}]$ | $\sigma_t$ [ps] | $\sigma_x \; [\mu { m m}]$ | $\sigma_t [\mathrm{ps}]$ |
| 100/70  | 3.2                            | 17.6            | 2.8                        | 15.3            | 2.5                        | 13.9                     |
| 200/100 | 8.6                            | 31.1            | 6.2                        | 22.3            | -                          | -                        |
| 200/190 | 17.9                           | 58.7            | 14.3                       | 62.6            | 8.8                        | 59.9                     |
| 500/200 | 27.3                           | 45.7            | 20.6                       | 34.6            | 20.6                       | 32.6                     |

#### FNAL testbeam (RSD 200/100)

 $\sigma_x = \sim 5 \,\mu \text{m}$  and  $\sigma_t = \sim 40 \,\text{ps}$ 

# 4D-tracking with RSD

## Hit reconstruction



### ML algorithms



## Production layout and technological splits

| wafer # | <i>n</i> -plus dose | <i>p</i> -gain dose | met. thickness | substrate | С |
|---------|---------------------|---------------------|----------------|-----------|---|
| 1       | А                   | 0.96                | thick          | FZ        | Ν |
| 2       | А                   | 0.96                | normal         | FZ        | Ν |
| 3       | А                   | 0.98                | normal         | FZ        | Ν |
| 4       | А                   | 1.00                | normal         | FZ        | Ν |
| 5       | В                   | 1.00                | normal         | FZ        | Ν |
| 6       | В                   | 1.00                | normal         | Ері       | Ν |
| 7       | В                   | 0.98                | normal         | FZ        | Ν |
| 8       | В                   | 0.96                | normal         | Ері       | Ν |
| 9       | В                   | 0.96                | normal         | Ері       | Ν |
| 10      | В                   | 0.96                | normal         | Ері       | Y |
| 11      | С                   | 0.96                | normal         | Ері       | Ν |
| 12      | С                   | 0.96                | normal         | Ері       | Y |
| 13      | С                   | 0.98                | normal         | FZ        | Ν |
| 14      | С                   | 0.98                | normal         | Ері       | Ν |
| 15      | С                   | 0.94                | normal         | FZ        | Ν |

Split table of parameters implemented in RSD2 (2021)



Low dielectric thickness Epi: 45  $\mu m$  / FZ: 55  $\mu m$ 

M. Mandurrino INFN Torino

## Sensors layout



# Testing campaigns

## ► RSD1:

measurements on irradiated structures

## ► RSD2:

- ► I(V) and C(V)
- ► gain measurements
- ► resistivity
- signal properties
- irradiation campaigns
- ► test-beams

# RSD for RD\_MUCOL

Present RSD are designed and produced for different general purpose particle-physics experiments (thick substrates, medium granularity, very low gain)

RSD optimized for a muon collider need for:

- Iow material budget (thin handle wafers)
- ► the **optimal geometry** to comply with the physics requirements
- ► production of **large-area** detectors
- ► radiation-hardness studies

Costs for one RSD production at FBK:

► batch of 25 6-inches epitaxial wafers and production under the INFN-FBK collaboration framework: 30 kEuro

## Selected references on RSD

- ► LGAD design: <u>https://doi.org/10.1201/9781003131946</u> (Chapter 3)
- ► RSD design: <u>http://dx.doi.org/10.1016/j.nima.2020.163479</u>
- ► First RSD1 tests: <u>http://dx.doi.org/10.1109/LED.2019.2943242</u>
- ► FNAL testbeam: <u>https://arxiv.org/abs/2007.09528</u>

# Thank you!

# Backup

M. Mandurrino INFN Torino

4D-tracking with RSD

# The first production: RSD1

## Detector testing

Electrical characterization campaigns on RSD1 have shown that FBK is able to reproduce the **optimal physical-technological parameters** we found at INFN through **numerical modeling** with high precision, reproducibility and homogeneity.

We also demonstrated to reach the challenging goal of producing (working) 100% fill-factor Silicon detectors with internal gain and high-segmentation level:



## (Preliminary) electrical tests at FBK



| wafer # | <i>n</i> -plus dose | <i>p</i> -gain dose | met. thickness | substrate | с |
|---------|---------------------|---------------------|----------------|-----------|---|
| 1       | А                   | 0.96                | thick          | FZ        | Ν |
| 2       | А                   | 0.96                | normal         | FZ        | Ν |
| 3       | А                   | 0.98                | normal         | FZ        | Ν |
| 4       | А                   | 1.00                | normal         | FZ        | Ν |
| 5       | В                   | 1.00                | normal         | FZ        | Ν |
| 6       | В                   | 1.00                | normal         | Ері       | Ν |
| 7       | В                   | 0.98                | normal         | FZ        | Ν |
| 8       | В                   | 0.96                | normal         | Ері       | Ν |
| 9       | В                   | 0.96                | normal         | Ері       | Ν |
| 10      | В                   | 0.96                | normal         | Ері       | Y |
| 11      | С                   | 0.96                | normal         | Ері       | Ν |
| 12      | С                   | 0.96                | normal         | Ері       | Y |
| 13      | С                   | 0.98                | normal         | FZ        | Ν |
| 14      | С                   | 0.98                | normal         | Ері       | N |
| 15      | С                   | 0.94                | normal         | FZ        | N |

## (Preliminary) electrical tests at FBK



| wafer # | <i>n</i> -plus dose | <i>p</i> -gain dose | met. thickness | substrate | С |
|---------|---------------------|---------------------|----------------|-----------|---|
| 1       | А                   | 0.96                | thick          | FZ        | Ν |
| 2       | А                   | 0.96                | normal         | FZ        | Ν |
| 3       | А                   | 0.98                | normal         | FZ        | Ν |
| 4       | А                   | 1.00                | normal         | FZ        | Ν |
| 5       | В                   | 1.00                | normal         | FZ        | Ν |
| 6       | В                   | 1.00                | normal         | Ері       | Ν |
| 7       | В                   | 0.98                | normal         | FZ        | Ν |
| 8       | В                   | 0.96                | normal         | Ері       | Ν |
| 9       | В                   | 0.96                | normal         | Ері       | Ν |
| 10      | В                   | 0.96                | normal         | Ері       | Y |
| 11      | С                   | 0.96                | normal         | Epi       | Ν |
| 12      | С                   | 0.96                | normal         | Ері       | Y |
| 13      | С                   | 0.98                | normal         | FZ        | Ν |
| 14      | С                   | 0.98                | normal         | Ері       | Ν |
| 15      | С                   | 0.94                | normal         | FZ        | Ν |

## (Preliminary) electrical tests at FBK



| wafer # | <i>n</i> -plus dose | <i>p</i> -gain dose | met. thickness | substrate | с |
|---------|---------------------|---------------------|----------------|-----------|---|
| 1       | А                   | 0.96                | thick          | FZ        | Ν |
| 2       | А                   | 0.96                | normal         | FZ        | Ν |
| 3       | А                   | 0.98                | normal         | FZ        | Ν |
| 4       | А                   | 1.00                | normal         | FZ        | Ν |
| 5       | В                   | 1.00                | normal         | FZ        | Ν |
| 6       | В                   | 1.00                | normal         | Ері       | Ν |
| 7       | В                   | 0.98                | normal         | FZ        | Ν |
| 8       | В                   | 0.96                | normal         | Ері       | Ν |
| 9       | В                   | 0.96                | normal         | Ері       | Ν |
| 10      | В                   | 0.96                | normal         | Ері       | Y |
| 11      | С                   | 0.96                | normal         | Ері       | Ν |
| 12      | С                   | 0.96                | normal         | Epi       | Y |
| 13      | С                   | 0.98                | normal         | FZ        | N |
| 14      | С                   | 0.98                | normal         | Ері       | N |
| 15      | С                   | 0.94                | normal         | FZ        | Ν |