

Attività simulazioni di fisica ed esperimento

Massimo Casarsa (INFN-Trieste)

Riunione Referee RD_MUCOL – 14 settembre 2021

- Physics studies with the detector full simulation.
- Full-simulation detector studies with the beam-induced background and latest software developments (with focus on the tracker).

Physics studies with detector full simulation

INFN

Baseline detector model

hadronic calorimeter

Vertex Detector: 60 layers of 19-mm steel double-sensor layers absorber + plastic scintillating tiles: (4 barrel cylinders and 4+4 endcap disks); 30x30 mm² cell size; 25x25 µm² pixel Si sensors. Inner Tracker: 3 barrel layers and electromagnetic calorimeter 7+7 endcap disks; 50 µm x 1 mm macro-40 layers of 1.9-mm W pixel Si sensors. absorber + silicon pad sensors; Outer Tracker: 3 barrel layers and \rightarrow 5x5 mm² cell granularity: 4+4 endcap disks; \rightarrow 22 X₀ + 1 λ₁. 50 µm x 10 mm microstrip Si sensors. muon detectors shielding nozzles 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke; Tungsten cones + borated polyethylene cladding. 30x30 mm² cell size. superconducting solenoid (3.57T)

Based on CLIC's model + the MDI and vertex detector designed by MAP.

M. Casarsa

tracking system

$(INFN) H \rightarrow ZZ^* \rightarrow \mu\mu\mu\mu @ 1.5 and 3 TeV$

- Study of the channel H \rightarrow ZZ^{*} \rightarrow 4 μ at 1.5 (0.5 ab⁻¹) and 3 TeV (1.3 ab⁻¹). BA
- Sensitivity to the HZZ coupling.

Muon Collider, channel $H \to Z Z^* \to 4 \mu$						
Results	$\sqrt{s} = 1.5 \text{ TeV}$	/, $L = 500 \text{ fb}^{-1}$	$\sqrt{s} = 3$ TeV, $L = 1300$ fb ⁻¹			
	significance	$\frac{\Delta g_{HZZ}}{g_{HZZ}}$ (%)	significance	$\frac{\Delta g_{HZZ}}{g_{HZZ}}$ (%)		
without BIB	3.61	30.09	6.85	15.83		
with BIB	3.08	35.75	-	-		

[A. Zaza, poster at LHCP2021]

5

$(INFN H \rightarrow \mu\mu @ 3 TeV$

Process	Expected events with				
r locess	$105 < m_{\mu\mu} < 145~{\rm GeV}$				
$\mu^+\mu^- o H u_\mu \bar{ u}_\mu, \ H o \mu^+\mu^-$	24.2				
$\mu^+\mu^- \to H\mu^+\mu^-, \ H \to \mu^+\mu^-$	1.6				
$\mu^+\mu^- o \mu^+\mu^- u ar{ u}_\mu$	636.5				
$\mu^+\mu^- \to \mu^+\mu^-\mu^+\mu^-$	476.4				
$\mu^+\mu^- \to t\bar{t} \to W^+W^-b\bar{b}, \ W^\pm \to \mu^\pm\nu_\mu(\bar{\nu}_\mu)$	1.1				

• Prospects for the measurement of $\sigma_{H} \times BR(H \rightarrow \mu\mu)$ at 3 TeV

TS

Assuming an integrated luminosity of 1 ab⁻¹ and no BIB effects:

$$\frac{\Delta \sigma_H}{\sigma_H} \sim 38\%$$

 CLIC estimate at 3 TeV with 2 ab⁻¹: 26% [Eur. Phys. J. C 73 (2013) 2290].

[A. Montella, poster at EPS2021 and talk at Higgs2021]

INFN Dark SUSY @ 3 TeV

- Search for a massive dark photon produced from neutralino decays in Dark SUSY model: preliminary estimate of signal reconstruction efficiency in unexplored phase-space region.
- Two search channels with 4 and 8 muons in the final state.

PV

7

	$m(H_d) = 30 \text{ GeV}$		$m(H_d) =$	$m(H_d) = 50 \text{ GeV}$		$m(H_d) = 70 \text{ GeV}$	
	loose	tight	loose	tight	loose	tight	
m(a _d) = 1 GeV	34.5%	32.2%	33.0%	30.5%			
$m(a_d) = 10 \text{ GeV}$	60.7%	57.1%	69.4%	64.3%	70.7%	65.4%	
$m(a_d) = 20 \text{ GeV}$			70.2%	62.7%	76.1%	67.2%	
$m(a_d) = 30 \text{ GeV}$					73.6%	66.3%	

[C. Aimè, talk at APS2021 and poster at EPS2021]

• Search for $H \rightarrow cc$ at 1.5 at 1.5 (0.5 ab^{-1}) and 3 TeV (1.3 ab^{-1}).

Physics process	N. of events in the Higgs region after all selections	Absolute efficiency	
$\mu^+\mu^- \to H \nu \bar{\nu} \to c \bar{c} \nu \bar{\nu}$	378 ± 19	0.0849 ± 0.0028	
$\mu^+\mu^- \to c\bar{c} \; 2lep$	619 ± 25	0.0031 ± 0.0006	
$\mu^+\mu^- \to H \nu \bar{\nu} \to b \bar{b} \ \nu \bar{\nu}$	567 ± 24	0.0063 ± 0.0008	
$\mu^+\mu^- \to H \nu \bar{\nu} \to gg \ \nu \bar{\nu}$	19 ± 4	0.0014 ± 0.0004	

BA

$\sqrt{s} \ [TeV]$	\mathcal{L} [fb ⁻¹]	S	В	$S/\sqrt{S+B}$	$\Delta\sigma/\sigma$	$\Delta g_{Hcc}/g_{Hcc}$
1.5	500	378	1205	9.5	10.5 %	5.5 %
3.0	1300	1565	4337	20.4	4.9 %	2.6 %

M. Casarsa

[P. Mastrapasqua, poster at LHCP2021]

$(INFN) HH \rightarrow bbbb @ 3 TeV$

- The HH channel represents a gateway to the trilinear Higgs self-coupling.
- Expected yield at $\sqrt{s} = 3$ TeV with 1.3 ab⁻¹: S = 65 B = 561

$$\frac{\Delta \sigma_{HH}}{\sigma_{HH}} \sim 30\%$$

9

Detector studies and software development

Tracker layout

Vertex detector (VXD)

- barrel: 4 cylindrical layers endcaps: 4 + 4 disks
- double-layer Si sensors:
 25x25 µm² pixels
 50 µm thick

 σ_{T} = 30 ps

Inner Tracker (IT)

- barrel: 3 cylindrical layers endcaps: 7 + 7 disks
- Si sensors:
 50 µm x 1 mm macro-pixels
 100 µm thick

 $\sigma_{T} = 60 \text{ ps}$

Outer Tracker (OT)

- barrel: 3 cylindrical layers endcaps: 4 + 4 disks
- Si sensors:
 50 µm x 10 mm micro-strips
 100 µm thick

 σ_{T} = 60 ps

- Sample: 10k single prompt muons with p = 10 GeV + BIB @ 1.5 TeV.
- Timing + double-layer selection applied.
- Tracking performed in a region of interest (ROI): only hits in a cone around the muon direction are used ($\Delta R = 0.05$).

Muon tracking efficiency w/ BIB

INFN

Muon p_T resolution w/ BIB

θ [°]

10⁻⁵

M. Casarsa

INFN

INFN Double-Layer filter

Loose DL: requires compatiblity with beamspot region within ~10mm;

• tight DL: assumes knowledge of primary vertex position.

INFN CKF tracking with ACTS

- Implementation of a Combinatorial Kalman Filter with the ACTS package.
 Integration into MuonCollSoft.
 Tuning and optimization underway.
 - Very promising tracking and computational performance: ~4 min/event with BIB.

INFN VXD realistic digi and reco

- Digitizatoin:
 - energy deposition fluctuations;
 - Lorentz angle effects;
 - charge drift and diffusion;
 - threshold dispersion;
 - FE chip's noise;
 - charge discretization.
- Reconstruction:
 - pixel clusterization.
- Cluster shape and size handle to reject BIB.

INFN ROI reconstruction of jet tracks

PD

INFN BIB effects on muon detectors

Particle	Endcap	Endcap	Endcap	Barrel
	(θ >12°)	(8° < θ < 12°)	(θ < 8°)	
neutrons	1.2 · 10 ³	5 · 10 ⁴	1.2 · 10 ⁶	1.4 · 10 ²
protons	16	3 · 10 ²	2.4 · 10 ⁴	
photons	6.2 · 10 ²	1 · 10 ⁴	7.2 · 10 ⁵	5
e+ e-	3	3.3 · 10 ²	5 · 10 ³	< 1
μ+ μ-	3	3.7 · 10 ²	1.2 · 10 ⁴	
pions, kaons	< 1	70	1 · 10 ³	
Total	≈ 2 kHz/cm ²	≈ 60 kHz/cm ²	≈ 2 MHz/cm ²	≈ 200 Hz/cm ²

 Higher fluxes of hits from BIB particles in the endcaps, in particular in the region around the beamline.

PV

Other on-going activities

- Study of the channels: $H \rightarrow bb$, $H \rightarrow WW$, dark photon and ALP with a monophoton signature.
- Reconstruction performance of the secondary vertices and performance of the b-jet tagging.
- Optimization of the selection time windows for the tracker hits to maximize the acceptance for slow particles.

Backup slides

MAP's vertex detector

MAP's VXD geometry:

the cylindrical layers of the vertex detector barrel are designed in such a way not to overlap with two BIB hot spots at z = ±15 cm around the interaction region.

INFN Tracker hits from BIB

- Being the closest detector to the beamline, the tracker is affected the most by the BIB, which produces a huge number of spurious hits. If not mitigated, it could severely compromise:
 - the detector operations (too many data to be read out);
 - the track reconstruction performance (huge combinatorics).
- A big fraction of BIB particles reaches the detector out of time w.r.t. the bunch crossing → exploit hit timing information.

