SRF activities @ LNL

The activity is partly included in the Materials Science for Nuclear Physics service that it manages:

- 2 Chemical Lab
- 2 Coating Lab
- 2 Facility for RF cold measurements (2 and 4.2 K) with 3 cryostat for measurement of QWR and 1,3 GHz elliptical cavities
- 1 characterization Lab (XRD, SEM, EDAX, profilometer, SC characterization)

Chemical Facility

Coating Plant

Cryogenic Plant

Material characterizations

SRF activities @ LNL

- QWRs ALPI production
- Cavity forming by seamless techniques
- Surface preparation
- Superconductive coatings by PVD
- RF test

QWRs ALPI production

Cryostat for offline measurement test

QWR for ALPI

QWR sputtering system

RFQ and QWR plates sputtering system

QWR cavity machining

QWR for ALPI

Cavity forming by seamless techniques

Advantages of seamless cavities

Cheaper

 Avoid defects and irregularity of welding seams

Increase RF performances

(real examples: ALPI @ INFN and HIE-ISOLDE @ CERN)

HIE ISOLDE two seamless cavities performance at 4.5 K

Courtesy of Walter Venturini

Seamless cavities by spinning

- Hydroforming, explosive forming, electroforming, electrodeposition and spinning are the principal techniques explored for the production of seamless elliptical cavities
- LNL have a long experience in spinning of 1,3 and 1,5 GHz elliptical cavities
- In the framework of FCC studies spinning of 400 MHz has been explored

First seamless multicell by spinning

Spinning production steps

Step 1 COPPER PLATE PREPARATION

Step 2 DEEP DRAWING

Step 3
1st HALF CELL
SPINNING

Thermal annealings in Cavity #2

The 2 annealings was anticipated and a third annealing was added

1st Thermal Annealing

2nd Thermal Annealing

1st Thermal Annealing

2nd Thermal Annealing

3rd Thermal Annealing

Progetto POR-FSE SEAMLESS 2020-21

 Industrializzazione del processo utilizzando macchine a controllo numerico

Cavità QWR by Cold Backward Extrusion

Surface preparation

Impianti chimici

• Impianti chimici per QWR e 1,3 GHz e 6 GHz per trattamenti standard

Innovative mechanical polishing: Vibro-tumbling

- 1. Al_2O_3 Pyramids (wet process)
- 2. Cu powder 200 mesh (dry process)
- 3. **Coconut powder** (dry process)

PEP Introduction Current-voltage characteristics

PEP introduction Current-voltage characteristic

Processes parameters comparison

Process / parameters	BCP (1:1:2)	EP (1:9)	PEP
Solution composition	HF:HNO ₃ :H ₃ PO ₄	HF:H ₂ SO ₄	Diluted salts
Voltage	-	18 V	300 V
Current density	-	0.025 A/cm ²	0.4-0.6 A/cm ²
Power density	-	0.45 W/cm ²	~150 W/cm ²
Removing rate	1 µm/min (15℃)	0.3 µm/min (30°C)	3.5 µm/min (78 ℃)

Results on Nb

Fast polishing test

 $6.5\pm0.5~\mu\text{m}$ removed

Fast polishing test

 $6.5 \pm 0.5~\mu m \\ removed$

25

Fast polishing test

Superconductive coatings by PVD

Why thick films?

High Q₀
Thermal stability
Cost reduction

Our approach

Thick film by long pulse deposition

Total time of process ~ 5 hours

Single Layer thickness 100 - 500 nm

Reduce stress film!

Our approach

Thick film by long pulse deposition

- Columnar growth
- Larger grains

Cav 21: 75 μm **500nm** single layer thickness

J. A. Thornton and D. W. Hoffman, "Stress-related effects in thin films," Thin Solid Films, vol. 171, no. 1, pp. 5–31, 1989.

Our approach

Thick film by long pulse deposition

Thick Films RF Results

• 30 cavities coated with thick films exploring different parameters

• Q-slope still remain in many cavities...

• ...but not in all!

Nb₃Sn @ LNL - Motivation

High performance of Nb3Sn @ 4.2 K → cooling by cryocooler

High thermal conductivity substrate is preferred

Liquid Tin Diffusion process (LNL 2006)

S. M. Deambrosis et al., "A15 superconductors: An alternative to niobium for RF cavities," Physica C, 2006

Haloscope for Axions detection

Material request:

Q 10⁶ at high field (>5 T) is required

NbTi haloscope developed in QUAX at LNL/LNF

NbTi push Cu haloscope Q up to 10⁵ @ 5T

Nb₃Sn, H_{c2} ~ 30 T, Tc = 18 K NbTi, H_{c2} ~ 15 T, Tc = 10 K

Nb₃Sn is a better SC than NbTi

RF Test

RF Test on accelerating cavities

• Elliptical Cavities: 1.3, 1.5, 6 GHz

• Quarter Wave Resonators: 101 – 160 MHz

Trapped Flux measurements on 6 GHz cavities

Projects and LNL role

JUST FINISHED:

CERN-INFN-STFC (KE-2722/BE/FCC):

- developing of Nb thick film technology and high temperature deposition technique in 6 GHz cavities in view of a possible application to 800 MHz and 400 MHz cavities.
- Fabrication of seamless Cu 400 MHz elliptical cavities by spinning and R&D of the spinning process

EASITRAIN (WP Leader)

- developing of Nb thick film technology and high temperature deposition technique in 6 GHz cavities in view of a possible application to 800 MHz and 400 MHz cavities.

H2020 ARIES (task leader)

- substrate surface preparation

PRESENT:

H2020 i.FAST (task leader)

- developing of Nb3Sn on Cu PVD technology and realization of a 1.3 GHz elliptical cavities Nb3Sn on Cu

TEFEN (CSN5, national responsable)

- developing of Nb thick film technology and high temperature deposition technique
- Developing of Plasma Electroliythic Polishing

