The upgraded low-background germanium counting facility Gator for high-sensitivity y-ray spectrometry

Gabriela R. Araujo, Laura Baudis, Yanina Biondi, <u>Alexander Bismark</u>, Michelle Galloway Physik-Institut, Universität Zürich (2022)

Motivation

- Requirement of low backgrounds in rare event searches such as dark matter (e.g. XENONnT) and neutrinoless double beta decay (e.g. GERDA) experiments
- Germanium spectroscopy offers a non-destructive, high resolution screening method for material radioactivity quantification for these experiments

The Upgraded Gator Facility

- Located at the Gran Sasso underground laboratory in Italy (LNGS) at a depth of 3600 m water equivalent
- P-type coaxial high-purity germanium (HPGe) detector with 2.2 kg sensitive mass, enclosed in an ultra-low activity, oxygen-free copper cryostat and cooled with liquid nitrogen via a copper coldfinger

Selection of radiopure detector materials and precise background simulations based on radioassay results

Nuclear recoil backgrounds in XENON1T from materials (orange), predicted from screening measurements, and external sources (blue) [3].

b a

Detector Performance

- Integrated background count rate of

- Several layers of passive shielding material:
 - 5 7 cm oxygen-free high-conductivity (OFHC) copper
 - 5 cm inner (3 Bq/kg) + 15 cm outer (75 Bq/kg) lead
 - 5 cm polyethylene for ambient neutron mitigation
 - Continuous purge of airtight stainless steel enclosure with gaseous nitrogen for radon suppression
 - Sample pre-purging with nitrogen in load-lock chamber and subsequent loading using glove ports with access to the entire sample chamber volume $(25 \times 25 \times 33 \text{ cm}^3)$

Simulations & Analysis

Geant4 Monte Carlo simulations for

 $(82.0\pm0.7) d^{-1}kg^{-1}$ [1] in the energy region 100-2700 keV (as compared to value from 2010: (102.8±0.7) d⁻¹kg⁻¹ [2])

- Typical sensitivities of < a few mBq/kg</p> for exposures of 1-3 weeks and tens of kg sample mass (a few µBq/kg for radiopure samples and longer exposure)
- Regular calibrations of the detector with radioactive point- and extended sources (FWHM at 1332 keV: (2.03 ± 0.04) keV)

(a) HPGe crystal inside Cu cryostat, (b) OFHC Cu cavity, (c) lead shield, (d) airtight enclosure, (e) glove ports, (f) sample load lock

detection efficiency *ε* determination

Verification of the detection efficiency simulations with a calibrated Th-228 point source.

Remote monitoring of operations parameters to ensure detector stability and data quality

• Activities from counting method using background- and Compton-subtracted counts around the most prominent lines, with detection limits according to [4]

Left: Time-evolution of selected operations parameters. **Right:** Energy-dependent detector resolution.

Measured energy spectrum of sample photosensors (orange) as compared to the background (blue). Prominent isotopes are labeled.

References:

G. R. Araujo et al., "The upgraded low-background germanium counting facility Gator for high-sensitivity y-ray spectrometry", arXiv:2204.12478 (2022) L. Baudis et al., "Gator: a low-background counting facility at the Gran Sasso Underground Laboratory", JINST 6:08 (2011) E. Aprile et al., "Material radioassay and selection for the XENON1T dark matter experiment", Eur. Phys. J. C 77:890 (2017) [3] C. Hurtgen et al., "Revisiting currie – how low can you go?", Applied Radiation and Isotopes 53:45 (2000)