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GeMPI detectors at the LNGS underground laboratory

• 4 setups with highly sensitive Germanium 
spectrometers (active mass: 2.2 – 2.4 kg)

• Used for screening of materials for low 
background experiments

• Located at a depth of 3800 m w.e.

• Sensitivity for U and Th: 10 µBq/kg (most 
sensitive Ge spectrometers worldwide)

Basic detector design:

• 20 cm lead shield

• 5 cm copper shield 

• Sample chamber flushed with Nitrogen gas

• Ge diode inside ultra low background copper 
cryostat

[1]
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Background spectra of GeMPI detectors 

• Very low background achieved ↔ current sensitivity for U and Th: 10 µBq/kg

→ Improvement of sensitivity possible through further reduction of background 
→ Understanding of background through Monte Carlo simulations

Detector Bkg. Count rate 
[40, 2700] keV (cts/d/kg)

GeMPI 1 71 ± 1

GeMPI 2 38 ± 1

GeMPI 3 24 ± 1

GeMPI 4 65 ± 1
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Potential sources of background

Cosmic ray muons

• Greatly reduced flux compared to sea level (x 10−6):
(3.41 ± 0.01) x 10−4𝑚−2𝑠−1 [2]

• High mean energy: 262 GeV

• Possible muon veto system in future GeMPI
generations ?

Neutrons from natural radioactivity

• Neutrons fom (α,n)-reactions and rad. U and Th 
decays in the surrounding rock

• Flux between (0.5 ± 0.1) x 10−2𝑚−2𝑠−1 and
(3.0 ± 0.1) x 10−2𝑚−2𝑠−1 [4]

• Energies of a few MeV      [4]

• Possible neutron shield (made from PE) in future
GeMPI generations ?

Contaminations of shielding materials

• Shielding materials (Pb, Cu, PE etc.) can contain tiny 
radioactive contaminations

• Contaminations include:
Th232, U238, Co60, K40, Pb210 

• Isotope with highest background contribution:
Pb210 in lead shield

Muon-induced neutrons from surrounding rock

• Induced by cosmic ray muons

• Very small flux: (4.27 ± 0.01) x 10−6𝑚−2𝑠−1 [3]

• Energies up to 1 TeV [3]

• Possible neutron shield (made from PE) in future
GeMPI generations ?
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Detector modelling and particle simulation with Geant4-based toolkit MaGe

• MaGe based on Geant4, developed for Majorana and Gerda 
experiment [5]

• Detector geometries implemented using measurements from 
detector construction

• All 4 detectors share a very similar design → Simulations only done 
on one detector geometry (except for simulation of material 
contaminations)  

Input for simulations

• For muons and neutrons: 
Energy and angular distributions in the LNGS laboratory 
(Muon distributions courtesy of the XENON collaboration)

• For contaminations of materials: 
Material screening measurements of activities of radioactive 
isotopes in the materials (when available)
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Results: Muon-induced background

Count rate from simulations 
[40, 2700] keV

(cts/d/kg)

Percentage of total bkg. rate 
[GeMPI 3]

(%)

0.8 ± 0.1 3.3 ± 0.6 

• Muons only contribute to a small 
part of the GeMPI background

→Muon veto system in future 
GeMPI generations not 
necessary
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Results: Neutron background - Neutrons from muon interactions in surrounding rock 

Count rate from simulations 
[40, 2700] keV

(cts/d/kg)

Percentage of total bkg. rate 
[GeMPI 3]

(%)

0.0008 ± 0.0002 0.003 ± 0.001 

• Muon-induced neutrons only 
contribute a tiny part to the 
GeMPI background 
(despite very high energies)
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Results: Neutron background - Neutrons from nat. radioactivity in surrounding rock

Count rate from simulations between  
[40, 2700] keV

(cts/d/kg)

Percentage of total bkg. rate
[GeMPI 3]

(%)

3.1 ± 2.0 12.9 ± 8.2

• Neutrons from natural radioactivity 
make up a significant part of the 
GeMPI background

→ Future GeMPI generations should
include a Polyethylene neutron
shield 
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Results: Simulations of possible neutron shields

• At a thickness of 15 cm: 
- neutron contribution comparable to muon

contribution
- different boron contents do not have a significant 
influence on the effectiveness of the shield

→ 15 cm shield of pure PE for future GeMPI generations

• Hydrogen (in PE) ideal for deceleration of fast neutrons

• Boron has high cross section for thermal neutron capture

→ Simulation of neutron shield made from borated PE
with different boron contents
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Results: Contamination of detector materials – Pb210 in lead shield

Pb210

Po210

Pb206

Bi210
𝛽−

𝛽−

α

GeMPI 1 GeMPI 2 GeMPI 3 GeMPI 4

Pb210 Cont. (Bq/kg) ̴ 6 ̴ 3 ̴ 1.7 ̴ 6

Contr. to Bkg.
[40, 2700] keV

(cts/d/kg)

45 ± 4 23 ± 2 13 ± 1 45 ± 4

Percentage of total 
bkg. rate (%)

63 ± 5 60 ± 5 54 ± 4 69 ± 6

Pb210 decay chain:

𝑡 Τ1 2 = 22 a

𝑡 Τ1 2 = 138 d

𝑡 Τ1 2 = 5 d

𝑠𝑡𝑎𝑏𝑙𝑒
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Results: Possible ways to reduce contribution from Pb210 in lead shield 

• Pb210 contamination in lead shield is biggest 
contributor to background despite copper shield 

→ need different shield design to reduce contribution

• Simulations show that Pb210 contaminations in first 
two cm’s of lead shield have the biggest impact (see 
table)

→ Replace first two cm of lead shield with a very pure 
layer

Layer Percentage of total Pb210 contribution
coming from layer (%)

0 – 1 cm 85 ± 4

1 – 2 cm 11 ± 1

2 – 3 cm 3 ± 1

3 – 4 cm < 1

4 – 5 cm < 1
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Results: Suggested shield design with 2 cm of very pure lead as inner layer

• 2 cm layer of very pure Pb as inner shield: 

Assuming 0.5 Bq/kg Pb210 in new inner layer and 10 
Bq/kg in outer layer

→ Reduction of Pb210 contribution to (3.12 ± 0.59) 
cts/d/kg in the interval [40, 2700] keV

5.5.22 Nicola Ackermann (MPIK) - ICRM-LLRMT 2022 12



Results: Possible ways to reduce contribution from Pb210 in lead shield

• Another possible way to decrease the contributions 
from Pb210 in the lead shield:

Increase of the thickness of the ultra clean copper 
layer

• Increase of the thickness of the copper layer to 10 
cm

→ Reduction of the background contribution from 
Pb210 in the lead shield to (1.60 ± 0.40) cts/d/kg 
(assuming 10 Bq/kg Pb210 in the lead shield)
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Results: Suggested shield design with 10 cm copper layer

• 10 cm copper layer:

Assuming 10 Bq/kg Pb210 in lead shield:

→ (1.60 ± 0.40) cts/d/kg in the interval 

BUT: thicker copper layer also leads to increase in
background contributions from contaminations in
the copper

• Assuming typical values for contaminations of copper 
with a high radio-purity (including Th232, U238, K40, 
Co60):

→ Contributions from 5 cm copper layer:

(11.3 ± 0.9) cts/d/kg

→ Contributions from 10 cm copper layer:

(13.6 ± 1.2) cts/d/kg

5.5.22 Nicola Ackermann (MPIK) - ICRM-LLRMT 2022 14



Summary and outlook 

• Simulation of background components of GeMPI detectors:

- Pb210 in lead shield is main background source (  ̴ 60%)
- Muon contributions are very small (1% – 3%)
- Neutrons contribute up to 15%

• Consequences for future GeMPI generations:

- 2 new possible shield designs to reduce influence of Pb210 in lead shield: 10 Cu layer or 2 cm inner layer of 
very pure lead (or combination of both designs)

- 15 cm layer of pure PE as neutron shield
- no muon veto necessary
- Background count rate of 15 cts/d/kg between 40 keV and 2700 keV seems feasible (GeMPI 3: 24 +- 1 

cts/d/kg)

• Next steps: 

- Procurement of radio pure Pb & Cu
- Work on shield and detector design of a new material screening station at LNGS
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BACK - UP
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Energy distribution of muons in the LNGS laboratory
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Angular distribution of muons in the LNGS laboratory
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Energy distribution of neutrons in the LNGS laboratory

Neutrons from nat. radioactivity Muon-induced neutrons
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Determination of flux of neutrons from nat. radioactivity

Measurement of PE sample (11.57 kg) with GeMPI-1 
for Cress-Experiment 
→ 2.2 MeV line is induced by neutron capture in PE

PE sample (white) in MaGe geometry

2.223 MeV Line
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PE-Sample – Measurement and simulation

→ Remaining counts in line have to be induced by „missing“ flux from neutrons from natural
radioactivity

→ Can be used to indirectly determine this „missing“ flux

→ Factor (1.6 ± 1.0) for flux of neutrons from nat. radioactivity

*simulated with 0.7 ∗ 10−6
𝑛

𝑠 𝑐𝑚2

Counts in 2.223 MeV line
(𝒅−𝟏𝒌𝒈−𝟏)

Part of measured value
(%)

Measurement 0.095 ± 0.058

Muon-induced neutrons
(shield)

0.003 ± 0.001 3.16 ± 1.05 

Muon-induced neutronen
(rock)

0.0002 ± 0.0001 0.21 ± 0.11

Neutrons from nat. 
radioavtivity*

0.058 ± 0.003 61.05 ± 3.16
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Increase of thickness of copper layer 
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Composition of Bkg. Spectrum of GeMPI 3
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