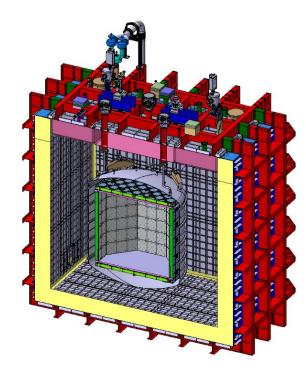
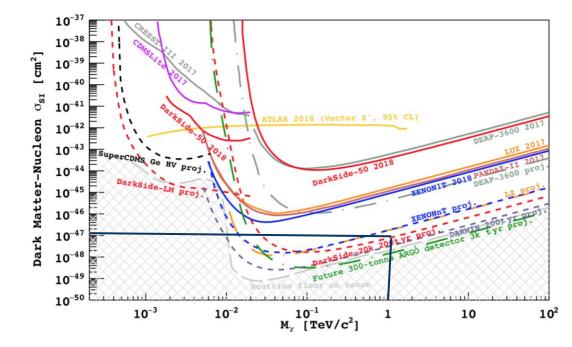


Cosmogenic activation calculation of experiments with LAr target

Teena Vallivilayil John


This project has received funding from the European Dark Union's Horizon 2020 research and innovation programme under grant agreement No 952480


Rare event search experiments

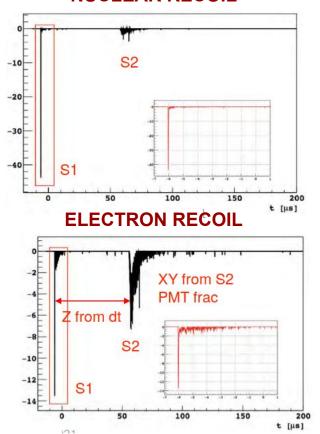
- Rare event search experiments requires ultra low background conditions.
 - Deep underground laboratories with passive and active shields
 - Selection of radio pure materials.
 - Effective methods to discriminate signal and background.
- The cosmogenic activation of detector materials while it is being stored or transported above ground can cause significant background.
- Estimation of the cosmogenic background is an essential step.

DARKSIDE-20K(DS-20K)

Schematic diagram of DS-20K

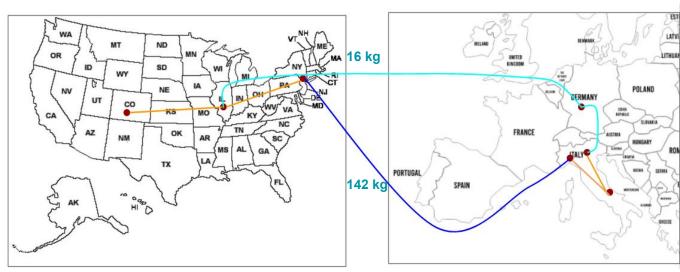
Expected spin-independent DM-nucleon scattering cross-section discovery sensitivity of current and future DM experiments

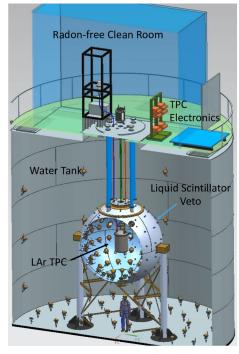
Liquid Argon target


S1 : scintillation signal

- Has high ionization and scintillation yields •
- Background rejection
 - Pulse shape Discrimination (PSD) Ο
 - Fast decay time (Singlet) ~ 7 ns
 - Slow decay time (Triplet) ~ 1600 ns
 - Rejection power-10⁸
 - S2/S1 Ratio-Ο

 - $(S2/S1)_{ER} > (S2/S1)_{NR}$ Rejection power-10² to 10³


- Radioactive isotopes
 - ³⁹Ar 0
 - Activity in Atmospheric Argon : 1 Bg/kg
 - Create a signal pile up as well as high data acquisition rates in the rare event search experiments.
 - ³⁷Ar , ⁴²Ar, ³H Ο


S2 : Ionisation Signal NUCLEAR RECOIL

Activation Yield Calculation

- Estimate ³⁷Ar and ³H activation yields.
- Validate against DarkSide-50
- Predict activation yields for DS-20k.
- DS-50 UAr was transported in two ways from Colorado to LNGS.

³⁷Ar and ³H

³⁷Ar

- → Decays by e⁻ capture
- → T_{1/2}=35 d
- → Q-value =813.87 keV
- → Main Production channels
 - 40 Ar(n,4n) 37 Ar
 - ³⁶Ar(n,γ)³⁷Ar

³Н

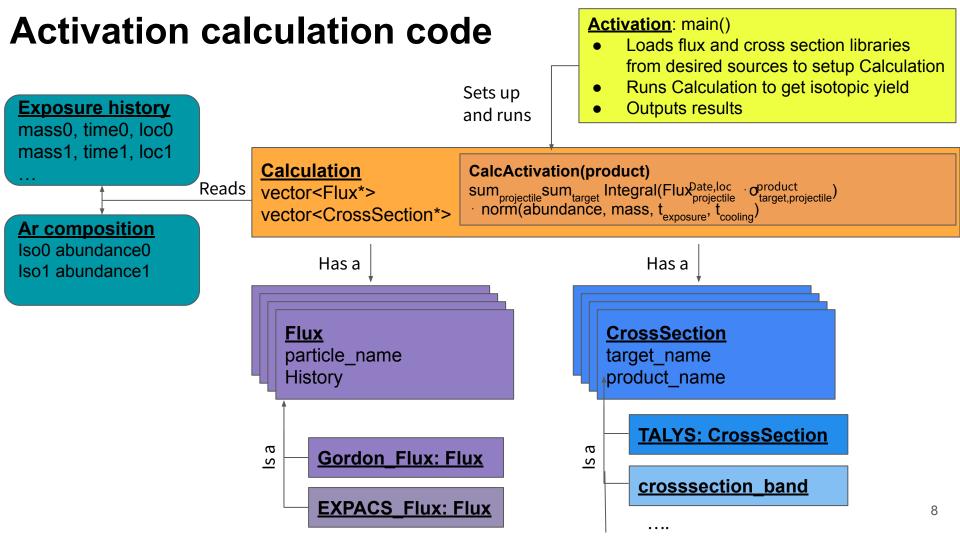
$\rightarrow \beta$ emitter

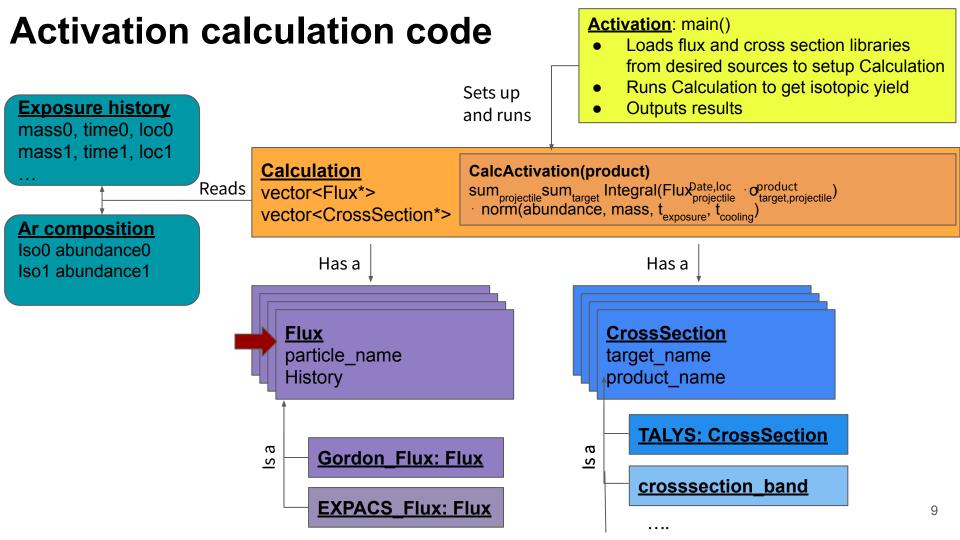
- → T_{1/2}=12.35 yr
- → Q-value= 18.591 keV
- → Fast neutron interaction of Ar isotopes produce ³H.

Backgrounds from ³⁷Ar and ³H

- ³⁷Ar- electron capture on K (2.83 keV) and L1 (0.28 keV)^[1].
- ³H- β emission(18.59 keV)

[1] https://doi.org/10.1103/PhysRevD.104.082005


Activation Rate & Induced Activity


• Induced activity is the total activity of a radionuclide during the exposure period.

$$R = N_{AR} \int F(E) * \sigma(E) dE$$
$$IA = R \left(1 - e^{-\lambda t_{exposure}} \right) e^{-\lambda t_{cooling}}$$

f(E): Cosmic Ray flux $\sigma(E)$: Reaction cross-section N_{AR} : Number of atoms in 1 kg of Ar *t*_{exposure} : Time UAr is exposed in a fixed location.

 $t_{cooling}$: Time difference between the time when detector started running and time when the UAr exposed in a fixed location

Cosmic ray Flux : EXPAC

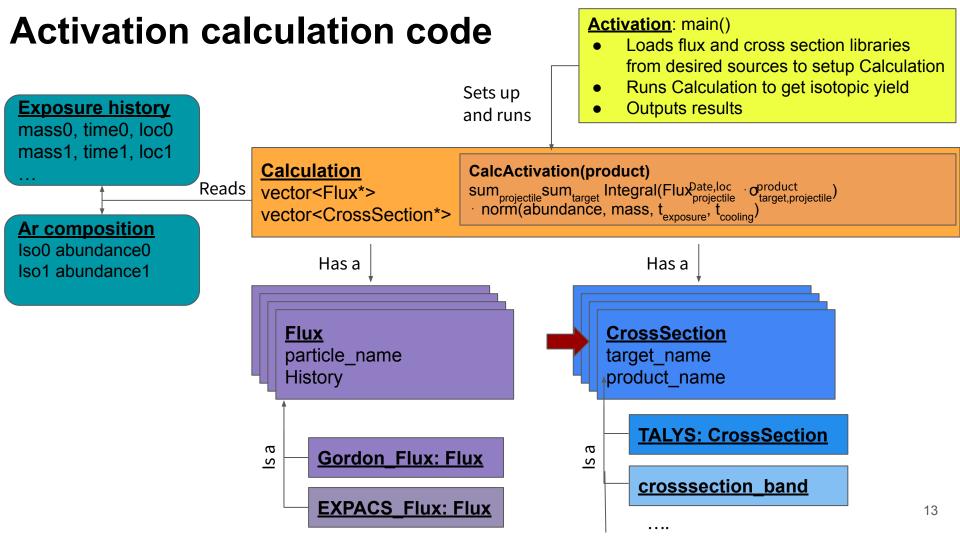
- EXPAC is a software based on the PHITS based Analytical Radiation (PARMA) model.
- **PARMA** An analytical model based on the MC simulation of the propagation of cosmic rays in the atmosphere performed by the **PHITS code**.
- Calculates the atmospheric cosmic-ray spectra of ions with charge up to 28 (Ni), n, p, μ ±, e±, and γ .

Input parameters → ★ Location(Latitude, Longitude, Altitude)
Time

For more info:<u>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160390</u> https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144679 http://phits.jaea.go.jp/expacs/

Cosmic ray Flux : Gordon Calculation

- The neutron flux and energy spectrum data from five ground-level measurements in North America are considered.
- An expression to scale the measured neutron flux to other locations has been developed.
- Neutron fluence rate spectrum at any location,


$$\frac{d\phi(E)}{dE} = \frac{d\phi_0(E)}{dE} F_{alt}(d) F_{BYSD}(R, d, I)$$

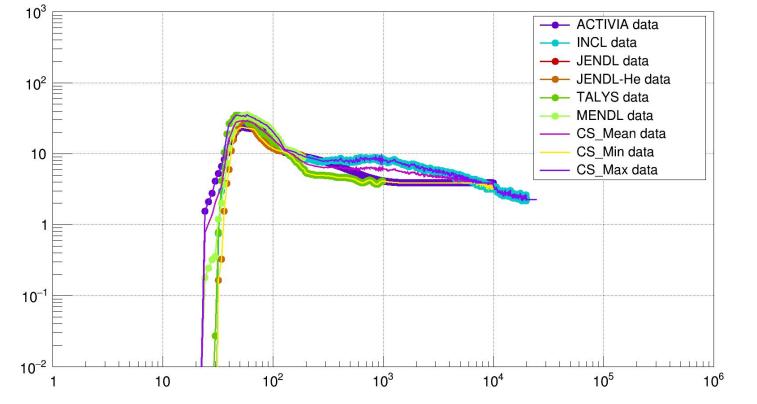
Input Parameter : Location(Latitude, Longitude, Altitude)

- dφ₀(E)/dE : fluence rate spectrum at reference location.
- F_{alt}(d) : describes the dependence on altitude.
- → F_{BSYD}(Rc,d,I) : describes the dependence on geomagnetic location and solar modulation (and also atmospheric depth)

EXPAC and Gordon Flux Distribution

Cross-section Data

Projectiles: n, p ,γ Targets:³⁶Ar, ³⁸Ar, ⁴⁰Ar

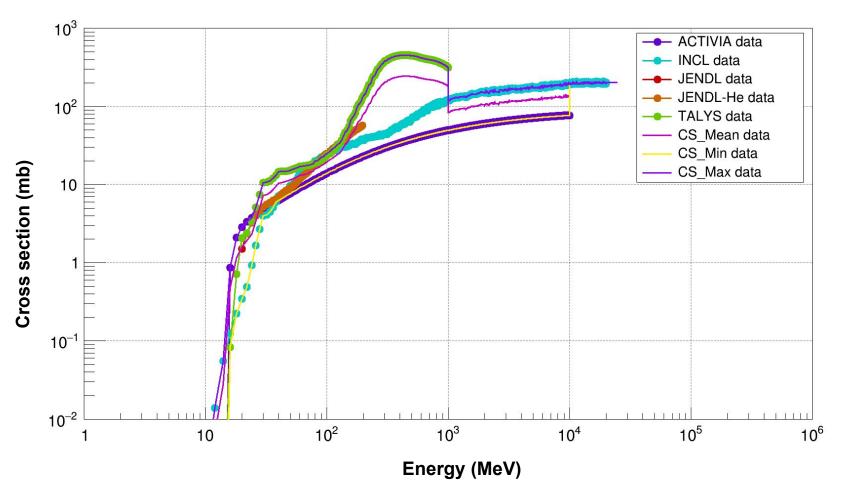

Major reaction channels

- 40 Ar(n,4n) 37 Ar
- ${}^{36}Ar(n,\gamma){}^{37}Ar$
- ${}^{40}Ar(n,*){}^{3}H$
- ³⁶Ar(n,*)³H
- ⁴⁰Ar(n,*)³H

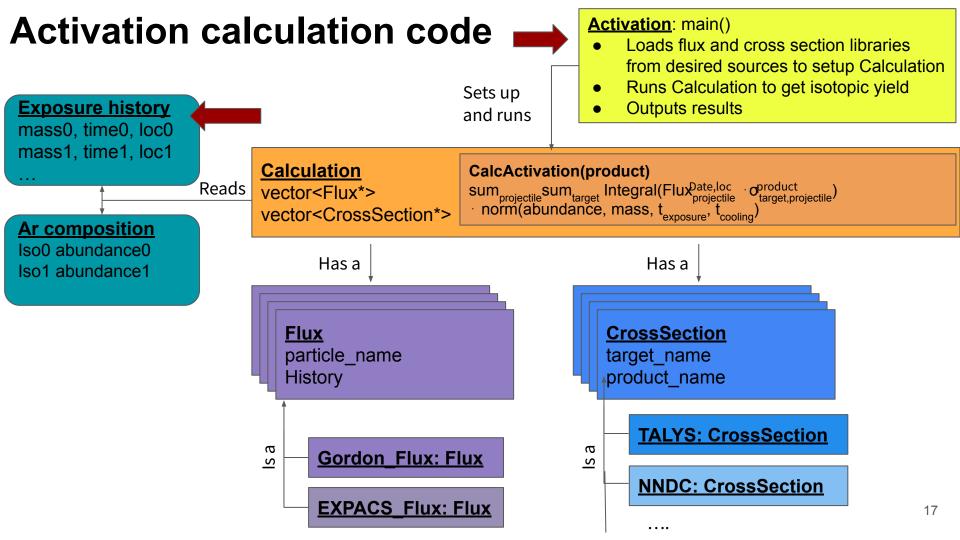
Cross-section Libraries						
Simulations Used		Da	Databases Used			
	TALYS		JENDL-He			
	ACTIVIA		JENDL			
	INCL		EXFOR			
			NNDC			
			MENDL			
			ENDF			

CS_band- A subroutine created in the software to get maximum, minimum, and median values of reaction cross section. Used to find the cross section error band.

Different Cross section Libraries of ⁴⁰Ar(n,*)³⁷Ar



Cross section (mb)


For scaling factors refer <u>https://arxiv.or</u> g/abs/1902.09 072

Energy (MeV)

Different Cross section Libraries of ⁴⁰Ar(n,*)³H

16

Induced Activity from Activation Calculation Simulation

PRELIMINARY RESULTS

Reactions	Flight	Overseas
⁴⁰ Ar(n,*) ³⁷ Ar	1.01 mBq/kg	0.18 mBq/kg
³⁸ Ar(n,*) ³⁷ Ar	0.13 µBq/kg	0.02 µBq/kg
³⁶ Ar(n,*) ³⁷ Ar	0.29 mBq/kg	3.09e-2 mBq/kg

Total Induced Activity

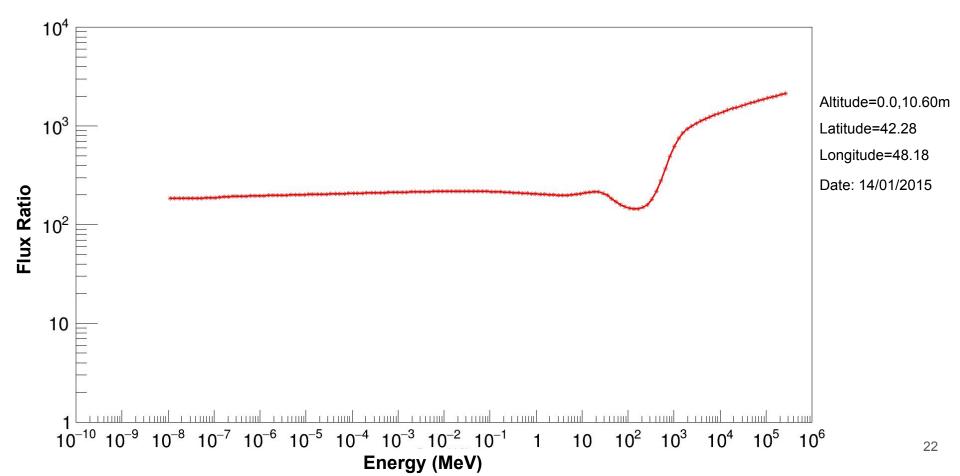
	Flight	Overseas
³⁷ Ar	1.7 ^{+0.38} 0.4 mBq/kg	0.26 ^{+0.09} 0.09 mBq/kg
³ H	0.14 ^{+0.11} mBq/kg	0.46 ^{+0.32} _{-0.34} mBq/kg

Conclusions

- ³⁷Ar is produced via fast and thermal neutron interaction of Argon isotopes, whereas ³H is produced by the fast neutron interaction of Argon isotopes.
- The induced activity of ³⁷Ar at the flight level is greater than that of the overseas level. The half life of ³⁷Ar is shorter than the exposure time at overseas level.

Next Steps

- Include ³⁹Ar and ⁴²Ar reactions in the Activation Calculation package.
- Validate the results with DS-50 data with ³⁷Ar (Blind Analysis).
- Predict the cosmogenic activation of DS-20k.


Thank You

Prof. Cristian Galbiati, GSSI

- Dr. Shawn Westerdale, Princeton University
- Dr. Masayuki Wada, AstroCeNT
- Dr, Richard N Saldanha, Pacific Northwest National Laboratory
- Dr. Henning O Back, Pacific Northwest National Laboratory
- Dr. Susana Cebrián Guajardo, Universidad de Zaragoza
- Dr. Iftikhar Ahmad, AstroCeNT
- Dr. Brianne R Hackett, Pacific Northwest National Laboratory
- Dr. Marco Rescigno, University of Roma

Backup slides

Flux Ratio between flight and overseas level

