

A low radioactivity He:CF4 TPC with optical readout for the CYGNO experiment

ICRM-LLRMT 2022, LNGS 2-6 May 2022

Andrea Messina - Sapienza Università di Roma & INFN Roma1 on behalf of:

F. D. Amaro, E. Baracchini, L. Benussi, S. Bianco, C. Capoccia, M. Caponero, D. S. Cardoso, G. Cavoto, A. Cortez, R. J. de Cruz Roque, I. A. Costa, E. Dané, E. Di Marco, G.Grilli di Cortona, G. D'Imperio, G. Dho, F. Di Giambattista, R. R. M. Gregorio, F. Iacoangeli, H. P. Lima Júnior, G. Maccarrone, R. D. P. Mano, M. Marafini, G. Mazzitelli, A. G. Mc Lean, A. Messina, M. L. Migliorini, C.M.B. Monteiro, R. A. Nóbrega, A. Orlandi, I. F. Pains, E. Paoletti, L. Passamonti, F. Petrucci, S. Pelosi, S. Piacentini, D. Piccolo, D. Pierluigi, D. Pinci, A. Prajapati, F. Renga, F. Rosatelli, A. Russo, J.M.F. dos Santos, G. Saviano, A. da Silva Lopes Júnior, N. Spooner, R. Tesauro, S. Tomassini, S. Torelli

The University Sheffield.

funded from ERC in Horizon 2020 program (grant agreement 818744)

- **Aiming at a large detector for high precision 3D tracking of** rare low energy nuclear recoils (keV)
- **Experimental challenges:** rate O(evt/kg/y), background rejection, and energy threshold (keV)
- **Strategy:** photograph nuclear recoil in a He:CF₄ (1 atm) TPC with a GEM amplification stage
 - 3D tracking: position, direction, and fiducialization, total released energy, dE/dx (head/tail)
 - optical sensors: high granularity, very low noise, and high sensitivity
 - optical coupling: sensors outside the sensitive volume, acquire large surfaces with small sensors

Soft electron from natural radioactivity He nuclear recoil

C M G N O timeline

2019 JINST 14 P07011 JINST 15 (2020) P08018

Instruments 6 (2022) 1, 6 JINST 15 (2020) P10001 JINST 15 (2020) 12, T12003 NIM A 999 (2021) 165209 Measur.Sci.Tech. 32 (2021) 2, 025902

CYGNO PHASE 0: Lime prototype

- He:CF₄ (1 atm)
- copper ring field cage, 50 cm drift
- 1 sCMOS sensor + 4 PMT
- 3 GEMs for a 33 x 33 cm² sensitive area
- acrylic vessel, aluminium faraday cage

- 1 bar,

30

ORC

2304 × 2304 5.3 Megapixels

HIGH RESOLUTION

READOUT NOISE 0.7 electrons rms Ultra-quiet Scan

Overground images 2D projection of over the 50 cm drift distance

Cosmic ray and radioactivity clearly visible (no shielding)

33 cm

Energy response

good linearity response in the energy range 4.5 keV - 45 keV Energy resolution of 15% at 5.9 keVee with sCMOS and PMT

Response to low energy nuclear recoils

40% nuclear recoil efficiency at 6 keVee with 96% rejection against ⁵⁵Fe

CYGNO PHASE 0: LIME underground installation

Internal background simulation

- Natural radioactivity from decay chains of ²³²Th, ²³⁸U, ²³⁵U, ...
- Activity of all the main components of LIME was measured underground by M. Laubenstain @ LNGS
- Main contribution from rings, \bullet resistors and cathode

Event rate [1/year]

Internal bkg can be reduced by 96% (99%) for ER (NR) with fiducial cuts

Component	²³⁸ U (^{234m} Pa)	²³⁸ U (²²⁶ Ra)	²³⁵ U	²³² Th (²²⁸ Ra)	²³² Th (²²⁸ Th)	⁴⁰ K
Camera body [Bq/pc]	7	1.8	0.4	2.1	2.1	1.9
Camera lens [Bq/pc]	0.9	0.41	0.031	0.08	0.08	11
GEM foil $[Bq/m^2]$	< 0.104	0.004	< 0.002	< 0.004	< 0.002	< 0.045
Acrylic [Bq/kg]		0.003		0.005	0.004	0.035

CYGNO PHASE 0: underground campaign

- Shielding: 10 cm of copper and 40 cm of water lacksquare
- Validation of Monte Carlo simulation and shielding
- Measure neutron flux in the 1-100 keV range (expect 200 NR from neutron in 4 months)

Shielding	Internal [ev/yr] (1-20 keV)	External* [ev/yr] (1-20 keV)
No shield	$1.5344(7) \times 10^{6}$	4.061(8)×10 ⁸
5cm copper	$1.5344(7) \times 10^{6}$	1.90(2)×107
10cm copper	$1.5344(7) \times 10^{6}$	$1.024(2) \times 10^{6}$
40cm water + 10cm copper	$1.5344(7) \times 10^{6}$	$2.46(1) \times 10^5$

PHASE 1: CYGNO_04 preliminary design

- 2 field cages with a common cathode closed by 2 matrices of 2x2 GEMs.
- Each GEM is readout by a module identical to LIME.
- low radioactivity PMMA vessel.
- Enclosed by 10 cm Cu + 110 cm water.

Detector Vol = 0.66x0.66x1.03 = 0.4 Mc

Designed at LNF and to be installed at LNGS

ICRM-LLRMT 2-6 May 2022 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

d by 2 matrices of 2x2 GEMs. to LIME.

PHASE 1: CYGNO_04 backgrounds

Full background simulation for 1 m3 detector

- NR: mostly from GEMs / vessel reducible with fiduacal cuts \bullet
- Low radioactivity GEMs at CERN following T-Rex R&D \bullet
- ER: working in close contact with producing companies to \bullet reduce the radioactivity of the sCMOS sensor and lens

CYGNO_04: ER rate [1-20] keV = 4.9x10⁵ cts/yr

CYGNO_04: NR rate [1-20] keV = 2.6x10³ cts/y

GEMs are here

PHASE 2: The $C \times G \times O$ experiment 30 m³ **Searching for low mass DM**

- Use 1(0.5) keVee threshold
- QF evaluated with SRIM
- **Angular distribution as discriminating information**
 - full head/tail recognition
 - 30 deg. resolution

Various scenarios with different background levels

isotropic distribution

10 GeV DM nuclear recoil signal

ICRM-LLRMT 2-6 May 2022 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

10

F in He:CF

10²

PHASE 2: The $C \times G \times O$ experiment 30 m³ **Searching for low mass DM**

Spin Independent

ICRM-LLRMT 2-6 May 2022 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

Spin Dependent

14

New R&D activities

Minimise internal radioactivity

- Develop custom sCMOS sensor
- Realisation of custom lens with large aperture & low radioactivity

Gas studies

- adding isobutane
- First demonstration of a **very** good light yield from with C₄H₁₀
- Work on eco-friendly gas mixture as substitute for CF₄

ICRM-LLRMT 2-6 May 2022 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

Negative ion drift

(financed by ERC INITIUM GA 818744)

- Add SF₆ to produce **negative** ions drift resulting in better fiducialization
- First encouraging results at nearly atmospheric pressure

JINST 13 (2018) 04, P04022

Summary

The CYGNO collaboration is developing a **He:CF₄ TPC with optical readout**

- and position resolution;
- CYGNO PHASE 0 installed underground at LNGS: measure neutron flux, validate the background model, shielding configuration;
- CYGNO PHASE 1: construct and operate a CYGNO demonstrator to pave the road for a larger apparatus for Dark Matter search.

ICRM-LLRMT 2-6 May 2022 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

• CYGNO PHASE 0 commissioned overground: very good detector stability, energy

Acknowledgements

This project has received fundings under the European Union's Horizon 2020 research and innovation programme from the Marie Sklodowska-Curie grant agreement No 657751 and from the European Research Council (ERC) grant agreement No 818744

CYGNO Project is funded by INFN.

Thank you!

F. D. Amaro, E. Baracchini, L. Benussi, S. Bianco, C. Capoccia, M. Caponero, D. S. Cardoso, G. Cavoto, A. Cortez, R. J. de Cruz Roque, I. A. Costa, E. Dané, E. Di Marco, G.Grilli di Cortona, G. D'Imperio, G. Dho, F. Di Giambattista, R. R. M. Gregorio, F. lacoangeli, H. P. Lima Júnior, G. Maccarrone, R. D. P. Mano, M. Marafini, G. Mazzitelli, A. G. Mc Lean, A. Messina, M. L. Migliorini, C.M.B. Monteiro, R. A. Nóbrega, A. Orlandi, I. F. Pains, E. Paoletti, L. Passamonti, F. Petrucci, S. Pelosi, S. Piacentini, D. Piccolo, D. Pierluigi, D. Pinci, A. Prajapati, F. Renga, F. Rosatelli, A. Russo, J.M.F. dos Santos, G. Saviano, A. da Silva Lopes Júnior, N. Spooner, R. Tesauro, S. Tomassini, S. Torelli

The University \mathbf{Of} Sheffield

The CXGNO collaboration:

LEMOn prototype

- 24 x 24 cm² readout area
- 20 cm drift
- 1 sCMOS + 1 PMT

orca-Flash4.0

ICRM-LLRMT 2-6 May 2022 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

JINST 15 (2020) P10001

He:CF₄ spectrum

Response to 55Fe X-rays: energy resolution and threshold

JINST 15 (2020) P10001

2019 JINST 14 P07011

Energy resolution of 15% at 5.9 keV_{ee} with sCMOS and PMT

Response high energy electrons: tracking and fiducalization

NIM A 999 (2021) 165209

The diffusion can be exploited to estimate the z position of the event.

The width (S) and amplitude (A) of the transverse light profile and PMT waveform become larger and smaller respectively with increasing distance from the GEM (z position).

Both with light and charge 15% z position resolution (y evaluated with 100-300 μ m resolution)

Large prototypes stability tests

He:CF4 60:40% 1 atm

LEMOn successfully operated for 25 consecutive days with automatic GEM hot spots recovery procedure

Hot spots and Discharges:

dumped by lowering GEMs voltage to 100 V and raising it again (3 min deadtime)

Similar stability with LIME: (less than 1 evt/hour) in agreement with a factor of 2 larger GEMs

JINST 15 (2020) P10001

