

Neutron tagging with gadolinium loaded PMMA ICRM-LLRMT 2022 LNGS, Assergi (Aq)

A. Marini (INFN-Genova), on behalf of the DarkSide collaboration

DarkSide-20k Key points

- Direct dark matter search experiment, that looks for Weakly Interacting Massive Particles (WIMPs) events
- The detector will be located... here, at LNGS!
- The detector is based on an ultrapure liquid low radioactivity Argon double-phase Time Projection Chamber (TPC)
- In the TPC the detection of two signals occurs:
 - Liquid phase → S1: produced by the scintillation light due to both the Ar dimers and the recombined fraction of ionized atoms
 - Gas phase → S2: produced by the free electrons escaped from recombination and drifted up to the liquid surface and extracted with an electric field
- Goal: 0.1 nuclear recoil events/200 tons*year.

DarkSide-20k scheme

DarkSide-20k **Background types**

DarkSide-20k Dead time

Probability to tag an event induced by ³⁹Ar decay or a γ interaction as neutron because it happens in coincidence with a true WIMP

event within a time window of 800 μ s.

The main sources of random coincidences with WIMP events within the time window Δt are:

- Decays of ³⁹Ar in the inner Veto or TPC;
- Events due to γ-rays depositing energy in the Veto or TPC;
- Pile-up events: two events of the previous categories happening very close in time.

DS-20k n tagging Veto

- Gd-PMMA is the chosen material for the neutron veto 11.2 tons needed
- Layers of Gd-PMMA surround the entire TPC volume.
- Gd-PMMA is highly efficient at moderating and then capturing neutrons.
- The capture resulting in the emission of several γ s, with energy up to 7.9 MeV.

Focus on Veto walls

Rich in Hydrogen

Capture relative inefficiency vs Gd content

Gd-loaded acrylic Development of the hybrid material

We performed R&Ds in Italy, Russia and China.

- Promising results have been obtained with Gd_2O_3 , $Gd(acac)_3$, and $Gd(MAA)_3$.
- All of these compounds are satisfactory from the chemical and radiopurity points of view.

The compounds ready for industrial production are:

- Gd(MAA)₃ dispersion in the liquid monomer (MMA).
- Gadolinium oxide nanograins (Gd_2O_3) mechanical dispersion in MMA.

O = Gd - O - Gd = O

- Radiopure acrylic matrix
- Good machining experience with radio pure plastics.
- Proprietary production chain
- Commercially available
- Radiopure
 Not soluble

Gd₂O₃ functionalization **Nanograins coating**

Nanograins

Igepal CO-520

epulsion

Zhang W. Nanoparticle Aggregation: Principles and Modeling. Advances in Experimental Medicine and Biologu, vol 811. Springer, Dordrech. https://doi.org/10.1007/978-94-017-8739-0_2

Solvent

But... Is the surfactant radiopure?

ICRM-LLRMT 2022, LNGS

7

LSC

Radiopurity of the components **Purifications & screening**

- The radiopurity of industrial oxide is well within requirements
- A strategy was found to reduce the K amount in the surfactant
- An ionic exchange resin was used (H^+ vs K^+)
- Then various ICP-AES and ICP-MS screenings were performed on the samples

 Gd_2O_3 nanograins qualification (HPGe)

Sample	²³⁸ U [mBq/kg]	²³² Th [mBq/kg]	⁴⁰ K [m			
ShinEtsu 1	13.6 ± 3.0	< 27	<			
ShinEtsu 2	6.6 ± 1.8	< 19	< /			
ShinEtsu 3	2.68 ± 0.47	2.31 ± 0.68	<			

Surfactant K contamination after purification (ICP-AES and ICP-MS)

	Sample	ICP-AES [mBq/kg]	ICP-MS [mBq/kg]
	Sol. 1 (raw Igepal)	1.87*10 ⁴	1.78*10 ⁴
	Sol. 2	4.80*10 ³	_
	Sol. 3	6.35*10 ³	_
	Sol. 4	4.64*10 ³	-
	Sol. 5	2.48*10 ³	2.63*10 ³
nova	Sol. 6	1.04*10 ⁴	_
	Sol. 7	1.53*10 ⁴	-
	Sol. 9	5.20*10 ⁴	1.89*10 ⁴
	Sol. 10	_	5.11*10 ³
	Sol. 12	1.83*10 ⁴	-
	Sol. 13	5.82*10 ³	-
	Sol. 14	-	1.01*10 ⁴
	Sol. 15	-	6.50*10 ³
	Sol. 16	_	8.67*10 ³
<	Sol. 17	3.19*10 ²	-

Gei

LSC

What does it mean? Let's see the γ background

- Igepal 0.1% not purified: safe, but we can still have room for improvements
- Igepal 0.1% purified: way below the PMMA contribution, so it's perfectly safe

	Contributions to γ-background [Hz]				
Contributor	lgepal 0.1% _w not purified		lgepal 0.1% _w purified		
	TPC	Veto	TPC	Veto	
Gd ₂ O ₃	0.4	0.9	0.4	0.9	
Igepal	10.2	19.6	0.3	0.5	
PMMA	9.7	19.5	9.7	19.5	
Total contribution from Gd-PMMA	20.3	40.2	10.1	20.5	

The γ bkg is safe

And now? Next steps for Gd_2O_3

- The R&D is over.
- We are scaling at final mass production capability with an Italian company, Clax s.r.l. (<u>https://www.claxitalia.com</u>)
- In the industrial samples we reached an homogeneity better than 5% with respect to nominal value in a 12 cm thick slab.
- The thickness of these samples has almost reached the DarkSide-20k requirement (17 cm).

Gd-complex solution Gd(MAA)₃

- Organometallic compound Gd(MAA)₃ produced from Gd₂O₃
- Process developed at Yangzhou University and scaled at DonChamp Chinese company (<u>https://</u> <u>donchampacrylic.en.ecplaza.net</u>)
- Functionalisation of the compound to make it soluble in MMA

Courtesy of prof. Y. Wang

Gd(MAA)₃ doped acrylic sheet (5 cm thick)

Gd(MAA)₃ recipe: radiopurity Screening

- The pure acrylic from the company (previous experience with Juno vessel) has already been screened and it's compatible to DarkSide-20k needs
- HPGe screenings on the composite material are still ongoing in China
- $Gd(MAA)_3$

Courtesy of prof. Y. Wang

Isotope	[mBq/kg]
⁶⁰ Co	< 2.38
¹³⁷ Cs	< 2.97
40 K	125.86 ± 49.96
²³² Th ²²⁸ Ac	23.81 ± 9.64
²³² Th - Th	17.07 ± 6.25
²³⁵ U	< 3.62
²³⁸ U - Ra	< 29.80
²³⁸ U - Rn	40.48 ± 5.99

HPGe results of Gd(MAA)₃

And now? Next steps for $Gd(MAA)_3$

- Transport of radiopure MMA from the company to the university labs.
- Dissolve Gd(MAA)₃ into MMA 10%,
- Transport Gd-doped MMA back to the company infrastructure
- Dilute with pure MMA to get $1\%_{\mu}$,
- Polymerisation

Courtesy of prof. Y. Wang

R&Ds conclusions

- The need of the DarkSide-20k experiment of tagging neutrons has led to the development of a hybrid material.
- Different strategies have been investigated
- The background requirements of the experiment apply stringent limits on the material radiopurity
- Basing on these requirements, the strategy included severe contamination screenings in the course of the R&D
- Two techniques have been scaled to industrial level production and they both represent a potential solution for the DarkSide-20k experiment

Thank you for your attention!

For further informations: anna.marini@ge.infn.it

DS-20k - the project UAr and Aria

- The DarkSide-20k TPC will be filled with liquid underground $^{40}\mathrm{Ar}$
- Atmospheric Ar contains ³⁹Ar, which emits β. Underground Argon (UAr) has a ³⁹Ar content that is 1400 times less than in atmospheric!

Urania: Argon extraction and purification (Colorado)

Seruci-0, Sardinia, Italy

Aria: final purification plant (Sardinia, Italy)