

Impact of environmental and materials radioactive contamination in superconducting quantum bits

Giulia D'Imperio for the DEMETRA and SQMS collaborations

02/05/2022 ICRM-LLRMT conference, LNGS

Qubits

- Two-level quantum-mechanical system
 - n classical bits \rightarrow string with n [0,1]
 - n entangled qubits $\rightarrow 2^n$ possible states

Ideal Features:

- 1. Strongly coupled to other qubits → entanglement
- 2. Decoupled from the world → quantum coherence

Qubits

- Two-level quantum-mechanical system
 - n classical bits \rightarrow string with n [0,1]
 - n entangled qubits $\rightarrow 2^n$ possible states

Ideal Features:

- 1. Strongly coupled to other qubits entanglement
- 2. Decoupled from the world → quantum coherence

Any two-level QM system can be used as a qubit:

- Trapped lons
- Photons (lasers)
- - Superconducting circuits

Superconducting qubits

A superconductive circuit with a non-linear inductance (**Josephson junction**) can be used as a qubit

Quasiparticles

Superconductors: electrons bound into Cooper pairs (no dissipation)

- Many mechanisms can break Cooper pairs into quasiparticles ($\Delta_0 \sim 0.1 \text{ meV}$)
- **Quasiparticles** are **dissipative** (in contrast to Cooper pairs)
- Sources: any energy dissipation
 - Infrared radiation
 - Thermal stress
 - 0
 - Cosmic rays and environmental radioactivity [DEMETRA project, INFN grant 2018]

J.Low Temp.Phys. 199 (2020) 475

Radioactivity vs qubits

- **Direct interaction** in the qubit unlikely (qubit dimension < 100 μm)
- Indirect interaction: radioactivity deposits energy in substrate (typically $^{\prime\prime}$ cm² area x 300 μ m thickness)
- Charges and phonons are produced and diffuse in the substrate
- Phonons break Cooper pairs and produce quasiparticles (QP)

Recent experimental results

- 1. Radioactivity will be (or already is) the **ultimate limit the coherence of qubits** [mainly MIT and PNNL]: *Vepsäläinen et al, Nature (2020).*
- 2. Radioactivity **limits quantum error correction** in a matrix of qubits [mainly Wisconsin Univ., INFN-Roma, Fermilab, Google]: *Wilen et al, Nature (2021), McEwen et al., Nature Physics (2022)*
- 3. **Suppressing radioactivity improves the performance of quantum circuits** [mainly INFN-Roma and LNGS, KIT]: *Cardani et al, Nature Communications, Gusenkova et al., Appl. Phys. Lett. 120, 054001 (2022)*

Quantum error correction

- Most popular idea for quantum error correction: encode quantum information in a matrix of qubits
- Key assumption: errors across the qubits belonging to this matrix are uncorrelated in space and time
- Radioactivity in the substrate can simultaneously affect more qubits

Simulations on a 4-qubits array

- 1. Energy deposits in Si chip:
 - a. **Muons** (blue): 0.5 mHz ~500 keV in substrate
 - b. Gammas from lab (red): 8 mHz
 ~100 keV in substrate
- 2. Creation of **e/h pairs** (3.8 eV each \rightarrow 10⁴)
- 3. Charges diffuse creating phonons

Wilen et al, Nature (2021)

Experimental results

- 1. Ramsey tomography on 4 qubits (Q1-Q2 Δ L= 640 μ m, Q3-Q4 Δ L=320 μ m)
 - → Many simultaneous charge jumps in pairs
 - $\circ~~54\%$ correlation prob for $\Delta L\text{=}$ 320 μm
 - 46% correlation prob for ΔL = 640 μm
 - no correlation for ΔL= 3 mm
 - 2. Separate measurement:
 - Q1 trigger for charge event
 - measure Q2-Q4 state (ΔL=3 mm)
 - → simultaneous change

Resonators in underground setup

Cardani et al., Nature Communications 2021

- 3 high kinetic inductance superconducting **resonators** (KIDs)
- 1.2 cm² x 330 μ m thick sapphire substrate
- QP burst → shift in frequency of resonators

• Quality factor of the resonators anti-correlated with rate of QP bursts

Resonators in underground setup

- Measured in 3 setups:
 - "Standard" Karlsruhe (K)
 - Underground setup at Gran Sasso + 10cm lead shielding (G)
 - Crosscheck above ground in Roma (R)
- Rate of QP bursts reduced by factor ~30 from 70 → 2.5 mHz in G
- Quality factor improved up to factor 2-3 in G

Qubits (fluxonium) in underground setup

- Readout line at LNGS upgraded
- Fluxonium qubit instead of resonators

• Large improvement of frequency stability

Soon measurements with more performing fluxonium and transmon qubits

Round robin

·····SQMS·····

- Rigetti round robin qubit for SQMS center
- 325 μ m-thick, 11.9×7 mm² silicon wafer hosting 16 transmon qubits
- Will be measured in multiple facilities: Boulder, Fermilab, Rigetti and LNGS

Rate from "far" radioactive sources

- 1 gamma/min from laboratory in absence of shield (~70 keV on avg)
- 1 neutron/hour (150 keV on avg)
- <1 muon/day (500 keV on avg)

Radioactivity of the materials "close" to the chip

Component	²³² Th [mBq/kg]	²³⁸ U [mBq/kg]	²³⁵ U [mBq/kg]	⁴⁰ K [mBq/kg]	⁶⁰ Co [mBq/kg]
COPPER FINGER	< 1.5	< 25	< 4	< 9	(0.6 ± 0.3)
MAGNETIC SHIELD	< 8.4	< 8.3	< 8.4	< 35	< 3.7
SINGLE-JUNCT CIRCULATORS	< 190	< 330	< 410	< 2000	< 50
DUAL-JUNCT CIRCULATOR	< 240	< 380	< 380	< 2600	< 70
TRIPLE-JUNCT CIRCULATOR	< 0.19	< 0.24	< 0.22	< 2.0	< 0.04
ATTENUATORS	< 52	< 2100	< 69	< 200	< 6
SMA CONNECTORS	< 48	(1800 ± 600)	(70 ± 30)	(240 ± 90)	(51 ± 8)
COPPER COAX CABLES	$4 \pm 12)$	(1500 ± 400)	(34 ± 17)	(740 ± 130)	< 5
NbTi COAX CABLE	< 750	< 1000	< 380	< 7000	< 230
RADIALL SWITCH	< 1.0	< 1.0	< 1.0	< 1.0	< 0.0
CRYO AMPLIFIER	< 890	< 12000	< 850	< 10000	< 260
CuBe CABLES	$40 \pm 40)$	(8000 ± 3000)	(350 ± 90)	< 500	< 31

Simulations in progress: → rate ~1 evt/day

Giulia D'Imperio - ICRM-LLRMT 02/05/22

Strategies for reducing radioactivity impact

- Low radioactivity:
 - underground laboratory, shieldings,...
 - improve radiopurity of setup materials, cleaning, etc...
- Novel chip design
 - phonon traps in the substrate (F. Henriques et al. Appl. Phys. Lett. 2019, J. Martinis npj Quantum Information 2021)
 - decouple chips as much as possible from common substrate (J. Orrell and B. Loer Phys. Rev. Appl. 2021, activities of P. For Diaz at Canfranc, ...)

Conclusions

- Radioactivity will be the ultimate limit for coherence of qubits
- Severely affects quantum error correction → correlated noise
- Evidence that **suppressing radioactivity improves the qubits**

Since 2018: a lot of progress, new bridges between communities

- Astro-particle physics has knowledge/expertise that would significantly advance the comprehension and performance of these devices
- **Particle physicists** are getting excited: quantum sensing to search for dark photons, axions, ... but also technological breakthroughs for other applications

Backup

Coherence

- The longer the better
- Coherence time >> gate operation time
- Goal: millisecond scale and beyond

LNCS ICRM - LLRMT

Original plot (up to 2012): M.H. Devoret & R.J. Schoelkopf, Science 339, 1169 (2013) extension (up to 2015): M. Reagor, PhD thesis (Yale)

Giulia D'Imperio - ICRM-LLRMT 02/05/22

Qubit vs radioactive source

- Qubit faced to a fast-decaying source (Copper-64, half-life 12.7 h)
- Coherence of qubit increases while the source decays
- Radioactivity limits the coherence time of superconducting qubits to **"ms**

Reducing impact of radioactivity will be critical for realizing fault-tolerant superconductive quantum computers

Monte Carlo simulations

Simulations are an important tool to

- predict the impact of radioactivity in a given setup
- find the elements that have the most important contributions
- optimize geometry, cleaning protocols, etc... to minimize the rate

Input:

- geometry of the chip + setup: box, holder, shieldings, cryostat
- flux of μ , γ , neutrons
- radioactivity of materials

Output \rightarrow Energy deposits in the chip (x,y,z,dE)