Search for Dark Photon and E_{T}^{miss} performance studies in ATLAS

Federica Piazza Università degli Studi and INFN, Milan

UNIVERSITÀ DEGLI STUDI **DI MILANO**

Summary of activities

- Research activity:
 - Dark Matter searches in final states involving photons and high E_{T}^{miss}
 - Implementation and performance studies for a "Global Particle Flow" E_{T}^{miss} towards Run-3
- Cosupervisor of bachelor theses:

 - a photon and missing transverse momentum with the ATLAS detector"
 - decays to a dark photon and a photon, with the ATLAS detector"
- Summer schools & conferences:
 - Les Houches Summer School 2021: Dark Matter (26/07/21 20/08/21)
 - CERN-Fermilab Summer School (23/08/21 4/08/21)
 - (29/08 8/09)

Matthias Vigl: "A new combined method to estimate the background from jets and electrons in a photon sample, and its application to the Mono-Photon analysis for Dark Matter search with the ATLAS detector" • Dario Pullia: "Background study in the search for dark photons from Higgs boson decays in final states with • Andrea Mitta: "Study of the reducible background, induced by electrons, in the search for Higgs boson

```
• Presentation of the Mono-photon analysis at Corfu Summer Institute 2021: Workshop on SM and Beyond
```


Signal: an excess of events with high E_T^{miss} with respect to Standard Model expectations

Mono-photon (Exotics)

- 1 photon + high E_T^{miss}
- Two models of DM production:
- **WIMPs** (Weakly Interacting Massive Particles)
- ALPs (Axion-Like-Particles)
- Updated results. published on JHEP: <u>JHEP02(2021)226</u>

Federica Piazza

Dark-photon (HLRS)

- 2 leptons from Z decay + 1 photon and E_{T}^{miss} from Higgs decay
- Interpretation: dark-photon production via
- Analysis under development

Signal: an excess of events with high E_T^{miss} with respect to Standard Model expectations

Mono-photon (Exotics)

- 1 photon + high E_T^{miss}
- Two models of DM production:
- WIMPs (Weakly Interacting Massive Particles)
- ALPs (Axion-Like-Particles)
- Updated results. published on JHEP: <u>JHEP02(2021)226</u>

Federica Piazza

Dark-photon (HLRS)

- 2 leptons from Z decay + 1 photon and E_T^{miss} from Higgs decay
- Interpretation: dark-photon production via $H \rightarrow \gamma \gamma_D$
- Analysis under development

Exclusion limits WIMPs production

Interpretations in terms of WIMP production can be translated to the m_{DM}- $\sigma_{SD/SI}(\chi$ -nucleon) plan, to compare with results obtained by Direct Detection Spin-dependent (SD) or Spinindependent (SI) experiments

<u>JHEP02(2021)226</u>

Exclusion limits Summary of ATLAS limits for s-channel simplified DM models

Federica Piazza

ATL-PHYS-PUB-2021-006

Signal: an excess of events with high E_T^{miss} with respect to Standard Model expectations

Mono-photon (Exotics)

- 1 photon + high E_T^{miss}
- Two models of DM production:
- **WIMPs** (Weakly Interacting Massive Particles)
- ALPs (Axion-Like-Particles)
- Updated results. published on JHEP: <u>JHEP02(2021)226</u>

Federica Piazza

Dark-photon (HLRS)

- 2 leptons from Z decay + 1 photon and E_{T}^{miss} from Higgs decay
- Interpretation: dark-photon production via
- Analysis under development

Signal: an excess of events with high E_T^{miss} with respect to Standard Model expectations

Federica Piazza

Dark-photon (HLRS)

- 2 leptons from Z decay + 1 photon and E_{T}^{miss} from Higgs decay
- Interpretation: dark-photon production via
- Analysis under development

Motivation and phenomenology

- Alternative to WIMP => existence of a Dark Sector with its own gauge interactions, with a "portal" to the SM sector (e.g. "Higgs portal")
- **Dark-photon** as gauge boson of a new unbroken U(1) group We consider a massless (or light) dark-photon
 - No mixing with photons => Decoupled from SM sector at tree level (avoid existing constraints)
 - Coupling with SM sector through higher-dimensional interactions via messenger field
 - Can help explaining small-scale structure formation, light-DM annihilation in asymmetric DM scenarios, Flavor hierarchy problem
- The analysis:
 - Dark-photon from Higgs decay, in ZH production mode
 - BSM BR up to 5% allowed by present constraints \bullet (Biswas, Gabrielli, Heikinheimo, Mele (2016))
 - Results in this final state already <u>published</u> by CMS

Kinematic selections

Preselections

- GRL, Detector event cleaning, PV selection, Loose Jet Cleaning (MiniNtuple skim)
- At least one baseline electron or muon
- Overlap removal between Vy and Vjets MC
- Trigger (single/double lepton)

SR selections

- 2 opposite sign muons/electrons with p_T^{lep1} > 27 GeV and p_T^{lep2} > 20 GeV
- 1 photon with $p_T^{\gamma} > 25 \text{ GeV}$
- Njet<=2 and Nbjet=0
- 76 < m_{ll} < 116 GeV
- m_{lly} > 100 GeV
- $E_T^{miss} > 60 \text{ GeV}$
- $\Delta \phi(\overrightarrow{\mathsf{E}}_{\mathsf{T}}^{\mathsf{miss}}, \overrightarrow{\mathsf{p}}_{\mathsf{T}}^{\mathsf{II}\gamma}) > 2.4$

Background processes

- **Zgam**: Zy+jets
- **Zqcd**: Z+jets
- **Top**: single Top + Vty + ttbar + Vtll + ttV + ttbarVV
- VV: ggVV, VV ewk
- **VVV** irreducible background (subdominant)
- **HZy**: ttHZy + VHZy + VBFZy + ggHZy (low contribution)

Background estimation

	ee channel	uu channel
hyGr	14.74+/-0.20	17.83+/-0.23
Z_strong	274.22+/-54.97	381.00+/-63.35
Z_ewk	0.10+/-0.07	0.00+/-0.00
Zg_strong	152.18+/-14.83	278.76+/-18.93
Zg_ewk	3.30+/-0.12	4.37+/-0.14
Wg_strong	3.11+/-1.57	1.40+/-1.11
Wty	4.40+/-0.29	4.89+/-0.29
top1	0.04+/-0.04	0.00+/-0.00
ttbarVV	0.03+/-0.01	0.01+/-0.01
ttV	24.21+/-0.97	24.43+/-0.96
ttbar	1.61+/-0.25	1.81+/-0.27
Vtll	2.38+/-0.39	3.13+/-0.45
VV	26.66+/-1.02	23.43+/-1.02
VV_ewk	0.22+/-0.01	0.21+/-0.02
ggVV	0.01+/-0.00	0.01+/-0.00
VVV	0.17+/-0.02	0.14+/-0.02
VVy	10.41+/-0.52	11.49+/-0.51
Vyy	3.16+/-0.63	6.20+/-0.74
ggH125Zy	0.18+/-0.01	0.23+/-0.01
ttH125Zy	0.01+/-0.00	0.01+/-0.00
VBFH125Zy	0.05+/-0.00	0.06+/-0.00
VH125Zy	0.09+/-0.00	0.11+/-0.00
totalMC	506.52+/-56.99	741.71+/-66.15

Federica Piazza

e->y => data-driven

- yields of the probe-e CRs rescaled by fake rate (inherited from the monophoton analysis)
- VV, VVV, top processes with fake photon
- subtraction of jet->e in probe-e CRs based on MC and truth info

Fake MET => data-driven

- ABCD method
- Zy, Zy+jets, Vyy, Higgs related bkgs
- Subtraction of e->y contamination in B, C, D regions based on • data-driven
- The other backgrounds temporarily (?) subtracted from MC

tty, single top, ttbar, Wty, VVy, Wy => MC

Fake E_T^{miss} ABCD optimization

- Defining an ABCD method
 - Different pair of variables and cut values tested
 - Both MET significance and MET considered as a first variable lacksquare
- Several second variables considered. Most promising from preliminary studies:
- Optimization criteria: lacksquare
 - R stability: weak dependence of R coefficient on the choice of cut values
 - R close to 1 (uncorrelated variables)
 - High signal efficiency in SR and low real MET contamination in the CRs lacksquare
 - Good statistics in CRs

$$\begin{array}{ll} \Delta\phi(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}},\mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}) & \Delta\phi(|\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}+\mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}|,\mathsf{nearest}(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}},\mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma})) & |\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}/\mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}| \\ \Delta\phi(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}+\mathbf{p}_{\mathsf{T}}^{\gamma},\mathbf{p}_{\mathsf{T}}^{\mathsf{ll}}) & \Delta\phi(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}},\mathsf{nearest obj.}) & |\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}+\mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}|/\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}} \end{array}$$

Data/MC agreement

Channel	R'_{MC}	R'_{data}	N' N _E
ee	1.093 ± 0.122	1.163 ± 0.057	$R' = \frac{r_A r_L}{N r_A}$
uu	1.151 ± 0.111	1.186 ± 0.052	INCINE

R estimation and uncertainty

- In the final estimates, R from zgam+zqcd+vyy+hzy
- R is stable with ETmiss \bullet => estimate R from (A+A')B(C+C')D

Channel	R	Rincl
ee	1.201 ± 0.236	1.115 ± 0.109
uu	1.627 ± 0.297	1.244 ± 0.113

Background estimation in VR

	Fa	ke MET	e	e->y	
Channel	MC	ABCD		MC	Data-driven
ee	1531.971 ± 93.777	1782.23	36 ± 212.506	29.57 ± 1.11	31.96 ± 5.07
uu	1951.629 ± 108.803	$629 \pm 108.805 \qquad 2239.634 \pm 233$		27.12 ± 1.61	33.68 ± 3.88
	-				
Combining e->y and		Channel	data	MC	Data-driven
fake MET estimates		ee	1936 ± 44	1580 ± 93.5	1833 ± 121
(+ MC for other bkg)		uu	2347 ± 48.4	1995 ± 109	2289 ± 137

ke MET		e->y	
ŀ	ABCD	MC	Data-driven
7 1782.23	36 ± 212.506	29.57 ± 1.11	31.96 ± 5.07
5 2239.63	34 ± 233.106	27.12 ± 1.61	33.68 ± 3.88
Channel	data	MC	Data-driven
ee	1936 ± 44	1580 ± 93.5	1833 ± 121
uu	2347 ± 48.4	1995 ± 109	2289 ± 137

Background estimation in VR

	Fa	ke MET	e	e->y	
Channel	MC	ŀ	ABCD		Data-driven
ee	1531.971 ± 93.777	7 1782.23	36 ± 212.506	29.57 ± 1.11	31.96 ± 5.07
uu	1951.629 ± 108.80	5 2239.634 ± 233.106		27.12 ± 1.61	33.68 ± 3.88
Combining	e->y and	Channel	data	MC	Data – driven
fake MET estimates		ee	1936 ± 44	1580 ± 93.5	1833 ± 121
(+ MC for other bkg)		uu	2347 ± 48.4	1995 ± 109	2289 ± 137

ke MET		e->y		
F	ABCD	MC	Data-driven	
7 1782.23	36 ± 212.506	29.57 ± 1.11	31.96 ± 5.07	
5 2239.63	34 ± 233.106	27.12 ± 1.61	33.68 ± 3.88	
Channel	data	MC	Data - driven	
ee	1936 ± 44	1580 ± 93.5	1833 ± 121	
uu	2347 ± 48.4	1995 ± 109	2289 ± 137	

Results in SR and fit strategy

Data-driven estimates in SR

- BDT weights as discriminant variable \bullet
- Preliminary binning optimization based on s/ $\sigma_{\rm b}$
 - Starting from last bin, merge with previous lacksquarebins until $(s/\sigma_{b+s})_{step-i} > (s/\sigma_{b+s})_{step-(i-1)}$
 - Iterate until first bin lacksquare
- 0.20 0.40 0.60 0.85 0.92 0.96 1
 - First bins could help constraining bkg
 - BDT < 0.6 => very low sensitivity
 - We can probably use tighter binning for BDT > 0.9 to take advantage of particularly higher sensitivity in this region
 - Lowest bins may help constraining background

Channel 433.2ee 670.7 uu

Fake MET		e->y		
MC	Data-driven	\mathbf{MC}	Data-driven	
29 ± 56.94	413.8 ± 54.9	31.11 ± 1.12	26.74 ± 3.74	
75 ± 66.13	578.0 ± 64.5	28.74 ± 1.15	25.97 ± 3.12	

MC rescaled by data-driven estimates Only stat + syst from data-driven

Expected exclusion limits (Preliminary)

- Using **HistFitter**:
 - BDT shape from MC
 - BDT templates: e->y, fake MET, top, Wgam, VVy
 - Free parameter: signal strength mu_SIG
 - e->y and fake MET bkg: MC rescaled by datadriven estimate, yields constrained by syst uncertainties (included in the likelihood as nuisance parameters, correlated among different bins)
 - top+y, Wgam, VVy backgrounds: temporarily MC.
 Only stat uncertainty considered
- Exclusion limits provided on signal strength for BR=5%. Can be translated into limits on $\sigma_{\rm ZH} \times {\rm BR}({\rm H} \rightarrow {\rm inv} + \gamma)$
- CMS results: BR > 3% excluded at 95% CL

		,		
mu_vvy	1.0000e+00	1.0000e+00 +/-	0.00e+00	0.000000

uu channel

expected	limit	(mec	dian)	0.759121
expected	limit	(-1	sig)	0.509608
expected	limit	(+1	sig)	1.1514
expected	limit	(-2	sig)	0.360168
expected	limit	(+2	sig)	1.68947

ee channel

```
expected limit (median) 0.95122
expected limit (-1 sig) 0.647391
expected limit (+1 sig) 1.42339
expected limit (-2 sig) 0.463979
expected limit (+2 sig) 2.06529
```

Combined

```
expected limit (median) 0.414193
expected limit (-1 sig) 0.280167
expected limit (+1 sig) 0.621804
expected limit (-2 sig) 0.199814
expected limit (+2 sig) 0.905257
```


Global Particle Flow E_T^{miss} (QT)

Introduction

MET reconstruction

• $\vec{E}_T^{miss} = -\sum \vec{p}_T^{\mu} - \sum \vec{p}_T^{e} - \sum \vec{p}_T^{\gamma} - \sum \vec{p}_T^{\tau} - \sum \vec{p}_T^{\tau} - \sum \vec{p}_T^{\tau} - \sum \vec{p}_T^{jets} - \sum \vec{p}_T^{soft}$

- Hard term: fully reconstructed and calibrated objects
- Soft term: signals not associated to reconstructed objects
 - CST: Cluster Soft Term
 - **TST: Track Soft Term**
- Signal ambiguity resolution based on association between signals and \bullet reconstructed physics objects in MET Association Map

Global Particle Flow (Rel. 22):

- Aim to combine measurements from the tracker and the calorimeter to build the constituents (Particle Flow Objects, PFOs) for each reconstructed physics object exploiting at best all detector information
- PFOs (or FlowElement) associated to each reconstructed particle with direct links
- Signals in MET reconstruction: tracks/clusters => neutral/charged PFOs (FE)

PFO association with links in MET

Standard PFlow MET

PFO association to leptons and photons through ΔR or clusters/tracks matching

- Links between leptons/photons and PFOs integrated into the MET Association Map
- Preliminary validation of direct links between e/γ objects and PFOs: \bullet
 - Z(ee), W(ev), y+jets topologies
 - both TST and CST
 - Looser and tighter object selections

Federica Piazza

GPF MET PFO association to leptons and photons using direct links

Good agreement in MET performances between standard and GPF MET reconstruction

JetTerm from "Overlap Removed" Jet collection

Standard PFlow MET

JetTerm from AntiKt4EMPFlowJet + overlap removal with other physics objects within MET

Energy of overlapping object subtracted from jet at constituent level

- residual energy of the jet > 20 GeV => rescaled to recover calibration and added to the JetTerm (partial overlap)
- residual energy of the jet < 20 GeV => jet added to the SoftTerm at constituent scale (exact overlap)

 \bigcirc

Federica Piazza

GPF MET

JetTerm from new "Overlap Removed (OR)" jet collection, i.e. jets reconstructed only from constituents not already associated to other selected physics objects in MET

- Constituents associated to selected physics objects not given as input to jet reconstruction.
- Soft constituents enter the SoftTerm

JetTerm from "Overlap Removed" Jet collection

Standard PFlow MET

JetTerm from AntiKt4EMPFlowJet + overlap removal with other physics objects within MET

Energy of overlapping object subtracted from jet at constituent level

- residual energy of the jet > 20 GeV => rescaled to recover calibration and added to the JetTerm (partial overlap)
- residual energy of the jet < 20 GeV => jet added to the SoftTerm at constituent scale (exact overlap)

 \bigcirc

Federica Piazza

GPF MET

JetTerm from new "Overlap Removed (OR)" jet collection, i.e. jets reconstructed only from constituents not already associated to other selected physics objects in MET

- Constituents associated to selected physics objects not given as input to jet reconstruction.
- Soft constituents enter the SoftTerm

JetTerm from "Overlap Removed" Jet collection

- Different topologies (Zee, y+jets, ttbar) tested with both TST and CST ullet
- Comparable performances between "standard" Jet Term and "Overlap Removed" one lacksquare
- Some hints of improvement using "Overlap Removed" MET, especially in events with partial overlap between jets and other physics objects (jet partially retained in Jet Term) and y+jets topology

p 1.5

p 1.5

25

Future plans

- Dark-photon analysis: ready for EB request (21 September)
- and performance studies with Jet/MET validation samples with high statistics
- Hardware: future involvement in LAr HV (Moving to CERN in October)

• Performance studies: finalize OR MET implementation in rel22 (muon-jet overlap)

