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Machine Learning in HEP

simulated top quark jet
anti-kt, R = O.B,rr = 600 GeV
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Supervised Learning

* Given N data with observable features {x; € X} and prediction
targets {y; € Y}, learn function mapping h(x) = y.

Classification Regression

Y is a finite set of labels (i.e. Y is a real number
classes) denoted with integers
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Unsupervised Learning

* Given some data D = {x;}, but no labels, find structure in data

Clustering: partition the data Dimensionality reduction: Density estimation and sampling:
into groups find a low dimensional (less estimate the p(x) pdf, and/or
D={D,UD,U--UD} complex) representation of the learn to draw plausible new

data with a mapping Z=h(X) samples of x
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Unsupervised Learning

* Many tasks require Unsupervised Learning

* Often framed as modelling the lower dimensional “meaningful degrees of freedom” that
describe the data

* Can we learn this compression and latent space?

Compress the data to a latent space with smaller One way to frame “retaining important
number of dimensions f information”: we can reconstruct original data
from latent space
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Latent space must encode and
“retain the important

Information” about the data
Original space & Original space &




Autoencoders

Autoencoders map a space to itself through a compression
x = Data z = Latent Space
X 2z - X

 Full transformation should be close to the identity on the data

Encoder Decoder
Network . - Network

(conv) (deconv)




Autoencoders _ — :

Encoder Decoder
Network — - Network
(conv) (deconv)

 Full transformation should be close to the identity on the data
X 2z > X
x - f(x) =1z
z - g(z) =X

Encoder: Map from to a lower dimensional latent space
- Neural network fg(x) with parameters &

Decoder: Map from latent space back to data space

- Neural network g,,(z) with parameters i



Autoencoders

Encoder Decoder
Network - - Network

(conv) (deconv)

X 2Z > X

x - f(x)=z
z »>g(z)=X%

* Loss: Mean Reconstruction Error (MSE) between data and
encoded-decoded data

L(8, ) =+ Balltn = 94 (o e

Minimize this loss over parameters of encoder () and decoder ().

We must: Choose latent dimension D, learn mapping functions f(-) and g(-).



f
AUtOenCOdel‘S Y If the latent space is of lower
/g_\\ dimension: autoencoder must
capture a “good” parametrization,

and in particular dependencies
i between components

Original space &
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X — ||[fO] = |fO| > [fO||> z > ||9®] > |[gP| > gV |— X

» If fpand g,, are linear, optimal solution given by Principle Components Analysis (PCA).
Autoencoﬁjers can be thought as a generalization of the PCA.

* When fy and g,, are multiple neural network layers, can learn complex mappings between x and z:
fe and g,, can be Fully Connected, CNNs, RNNs, etc.

— Choice of network structure will depend on data




Autoencoders

* Denoising Autoencoders: learn a mapping from corrupted data space ¥
back to original data space y

Original
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Autoencoders

* Anomaly detection: Find BSM (or top quark) jets in HEP training
on pure QCD light quark and gluon jets and apply top tagging
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Decoders to simulate data

Yl
 Can we sample in latent space and decode to generate 1B

data? i Latent space &
« What distribution to sample from in latent space? L
— Try Gaussian with mean and variance from data Autoeneoder sampling (d = 16)
R 232333 €19
Doesn’t work! Don’t know the right latent space density — @ ¢ 3 + § £ 3 $ 33 & ¢
— This can be done with a Variational Autoencoder 3 GHoFDLEGFSBS

a€[0,1], &(x,x',a)=g((1—a)f(x)+ af(x)).

Latent space #

Original space &

Autoencoder interpolation (d = 8)
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Parametrization trick

For z ~ pg(z), rewrite z as a function of a random
variable € whose distributions p(¢) does not depend
on 6. Gaussian Example:

z~ N(u,0) > z=0oxe+u wheree ~ N(0,1)
VAE Loss:

qy (z;|x)
max L (6, =maxz lo x|z; = e€ex*xoy (x)+ x))—1lo
0. ( ¢) oy = gp@( | i Y ( ) M‘L[)( )) g! p(Zi)
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Generative Adversarial Network (GAN) models aim to:
GAN Learn distribution p(x) that models pdf of the data and draw samples of plausible data points.
Explicit models if they can evaluate the p(x) or implicit models if they can only sample from p(x).

Two players game:
* Generator, network that is going to generate data that looks as less plausible as possible to
real data
* Discriminator, network that is going to compare real data to fake data to determine which one
is real or fake

What D wants

G -].-. D "
> | ———— “fake
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* We need: a generator that can produce samples and a measure to estimate how a sample is far

from being real or fake
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GAN

* Generator network gg(z) with parameters 6

— Map sample from known p(z) to sample in data space with z
noise

x=9p(2)

— We don’t know what the learned distribution pg(x) is, but
we can sample from Implicit Model

* Discriminator Network d 4 (x) with parameters ¢
— Classifier trained to distinguish between real and fake data

— Classifier is learning to predict p(input = real x)
— Classifier is our measure of not too far from the real data

e Generator goal:

— Produce fake data to trick discriminator
to classify as real

e Discriminator goal:

— Minimizes miss-classification of data as
real or fake

e Adversarial setup: two networks with
opposing objectives

What D wants
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GAN

Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(z;),5; = 0} with: z;~p(2)

|

Usually Gaussian V' (0,1)

For a fixed generator, can train discriminator by minimizing the binary cross entropy
N

1
L(@) = =55 ) [yilogdy(x:) + (1 = §7) log(1 — dy (7))]
i=1

= B para(0 108 g (1) | = Eznpzy|log(1 — d (96 (2)))]

What D wants
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GAN

What D wants

* Consider objective as a value function of ¢ and 6
V(8,0) = Errppuea(z) | 1084 (@) | + Barpe) | 1og(1 — dy(g0(2)) )|

— For fixed generator, V (¢, 8) is high when discriminator is good, i.e. when generator is not producing good fakes
— For perfect discriminator, V (¢, 8) is low when generator is good, i.e. when generator confuses discriminator

e So our optimization goal becomes:
0" = arg mein m(l?x V(gp,0)

NOTE: can prove that minimax solution corresponds to generator that perfectly reproduces data distribution
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GAN

StyleGAN v2

(Karras et al,2019)

Image-to-Image Translation with CycleGAN

Text-to-Image Synthesis with StackGAN

The bird is
This birdisred  shortand
Text : ‘
o and brown in stubby with
description i :
color, with a yellow on its
stubby beak body
64x64
GAN-INT-CLS
128x128
GAWWN
256x256
StackGAN-v1

Zhang et. al. 2017
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GAN

Calorimeter Energy Depositions with GAN

Random
. NN Generator
Noise CNN
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Conclusions

* Deep neural networks are an extremely powerful class of models

* We can express our inductive bias about a system in terms of model design,
and can be adapted to a many types of data

* Even beyond classification and regression, deep neural networks allow for
powerful model schemes such as Generative adversarial Networks that open
many new possible tasks where Machine Learning can be applied in HEP.
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