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Machine Learning in HEP
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Supervised Learning

• Given N data with observable features {𝑥! ∈ 𝑋} and prediction
targets {𝑦! ∈ 𝑌}, learn function mapping ℎ 𝑥 = 𝑦.

Classifica(on

𝑌 is a finite set of labels (i.e. 
classes) denoted with integers 

Regression

𝑌 is a real number 
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Unsupervised Learning

• Given some data D = {𝑥!}, but no labels, find structure in data

Clustering: par&&on the data 
into groups 

D = {𝐷! ∪ 𝐷" ∪⋯∪ 𝐷#}

Dimensionality reduc3on: 
find a low dimensional (less 

complex) representa&on of the 
data with a mapping Z=h(X) 

Density estimation and sampling:
estimate the p(x) pdf, and/or 
learn to draw plausible new 
samples of x 
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Unsupervised Learning
• Many tasks require Unsupervised Learning
• Often framed as modelling the lower dimensional “meaningful degrees of freedom” that
describe the data

• Can we learn this compression and latent space?

Compress the data to a latent space with smaller 
number of dimensions

Latent space must encode and 
“retain the important 
Information” about the data 

One way to frame “retaining important 
informa&on”: we can reconstruct original data 
from latent space 
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Autoencoders

Autoencoders map a space to itself through a compression
𝑥 =  Data 𝑧 = Latent Space

𝑥 → 𝑧 → $𝑥
• Full transformation should be close to the identity on the data
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Autoencoders

• Full transformation should be close to the identity on the data
𝑥 → 𝑧 → %𝑥
𝑥 → 𝑓 𝑥 = 𝑧
𝑧 → 𝑔 𝑧 = %𝑥

Encoder: Map from to a lower dimensional latent space
- Neural network 𝑓!(𝑥)with parameters 𝜃
Decoder: Map from latent space back to data space
- Neural network 𝑔"(𝑧)with parameters𝜓
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Autoencoders

𝑥 → 𝑧 → $𝑥
𝑥 → 𝑓 𝑥 = 𝑧
𝑧 → 𝑔 𝑧 = $𝑥

• Loss:Mean Reconstruction Error (MSE) between data and
encoded-decoded data

𝐿(𝜃,𝜓) = !
"
∑# 𝑥# − 𝑔$(𝑓%(𝑥#))

&

Minimize this loss over parameters of encoder (𝜃) and decoder (𝜓). 

We must: Choose latent dimension D, learn mapping func8ons 𝑓(⋅) and 𝑔(⋅).
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Autoencoders

• If 𝑓$and 𝑔% are linear, optimal solution given by Principle Components Analysis (PCA). 
Autoencoders can be thought as a generalization of the PCA. 

• When 𝑓$ and 𝑔% are multiple neural network layers, can learn complex mappings between 𝑥 and 𝑧: 
𝑓$ and 𝑔% can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

If the latent space is of lower 
dimension: autoencoder must 
capture a “good” parametriza?on, 
and in par?cular dependencies 
between components 
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Autoencoders

• Denoising Autoencoders: learn a mapping from corrupted data space �̃�
back to original data space 𝜒

– Mapping 𝜙! "𝜒 = 𝜒
– 𝜙! will be a neural network with 
parameters 𝑤

Loss:
𝐿(w) = "

#
∑$ 𝑥$ − 𝜙!(𝑥$ + 𝜖$) %
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Autoencoders

• Anomaly detection: Find BSM (or top quark) jets in HEP training
on pure QCD light quark and gluon jets and apply top tagging
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Decoders to simulate data
• Can we sample in latent space and decode to generate 

data?

• What distribution to sample from in latent space? 
– Try Gaussian with mean and variance from data 

Doesn’t work! Don’t know the right latent space density 
– This can be done with a Variational Autoencoder

Parametriza&on trick
For z ~ 𝑝$(𝑧), rewrite 𝑧 as a func&on of a random 
variable 𝜖 whose distribu&ons 𝑝(𝜖) does not depend 
on 𝜃. Gaussian Example:
z ~𝒩(𝜇,𝜎) →  𝑧 = 𝜎∗𝜖+𝜇 𝑤h𝑒𝑟𝑒 𝜖 ~𝒩(0,1) 
VAE Loss:
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GAN

Two players game: 
• Generator, network that is going to generate data that looks as less plausible as possible to 

real data
• Discriminator, network that is going to compare real data to fake data to determine which one 

is real or fake

• We need: a generator that can produce samples and a measure to es&mate how a sample is far 
from being real or fake

Generative Adversarial Network (GAN) models aim to:
Learn distribution p(x) that models pdf of the data and draw samples of plausible data points. 
Explicit models if they can evaluate the p(x) or implicit models if they can only sample from p(x).
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GAN

• Generator network 𝑔$(𝑧)with parameters 𝜃
–Map sample from known 𝑝(𝑧) to sample in data space with z
noise

𝑥 = 𝑔$(𝑧)
–We don’t know what the learned distribution 𝑝$(𝑥) is, but
we can sample from Implicit Model

• Discriminator Network 𝑑&(𝑥)with parameters 𝜙
– Classifier trained to distinguish between real and fake data
– Classifier is learning to predict p(𝑖𝑛𝑝𝑢𝑡 = 𝑟𝑒𝑎𝑙 𝑥)
– Classifier is our measure of not too far from the real data

• Generator goal:
– Produce fake data to trick discriminator 
to classify as real 
• Discriminator goal:
– Minimizes miss-classifica?on of data as 
real or fake 
• Adversarial setup: two networks with 
opposing objec?ves 
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GAN

For a fixed generator, can train discriminator by minimizing the binary cross entropy 
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GAN

• Consider objec?ve as a value func*on of 𝜙 and 𝜃

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good, i.e. when generator is not producing good fakes 
– For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good, i.e. when generator confuses discriminator 

• So our op?miza?on goal becomes: 
𝜃∗ = argmin

'
max
(

𝑉(𝜙, 𝜃)

NOTE: can prove that minimax solu?on corresponds to generator that perfectly reproduces data distribu?on 
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GAN
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GAN
Calorimeter Energy Deposi?ons with GAN
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Conclusions
• Deep neural networks are an extremely powerful class of models
• We can express our inductive bias about a system in terms of model design,
and can be adapted to a many types of data
• Even beyond classiDication and regression, deep neural networks allow for
powerful model schemes such as Generative adversarial Networks that open
many new possible tasks where Machine Learning can be applied in HEP. 
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