Lattice calculation of the short and intermediate time windows contributing to the leading-order HVP term of the muon g - 2 using twisted mass fermions.

> Giuseppe Gagliardi, INFN Sezione di Roma Tre (On behalf of the ETM Collaboration)

C. Alexandrou, S. Bacchio, P. Dimopoulos, J. Finkenrath, R. Frezzotti, M. Garofalo, K. Hadjiyiannakou, K. Jansen, B. Kostrzewa, M. Petschlies, F. Sanfilippo, S. Simula, C. Urbach, U. Wenger

STRONG 2020, 24-26 November 2021

Hadron Vacuum Polarization from Lattice QCD

RBC/UKQCD windows

 $a_{\mu}^{\rm HVP}$ decomposed as a sum of three contributions that probe different (Euclidean) time regions:

$$\begin{aligned} a_{\mu}^{SD} &= 4\alpha_{em}^2 \int_0^\infty dt \ K_{\mu}(t) \ V(t) \cdot [1 - \Theta(t, t_0, \Delta)] \\ a_{\mu}^W &= 4\alpha_{em}^2 \int_0^\infty dt \ K_{\mu}(t) \ V(t) \cdot [\Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta)] \\ a_{\mu}^{LD} &= 4\alpha_{em}^2 \int_0^\infty dt \ K_{\mu}(t) \ V(t) \cdot [\Theta(t, t_1, \Delta)] \end{aligned}$$

$$\begin{array}{l} \textbf{a}_{\mu}^{\mathrm{HVP}}=\textbf{a}_{\mu}^{\mathrm{SD}}+\textbf{a}_{\mu}^{\mathrm{W}}+\textbf{a}_{\mu}^{\mathrm{LD}}\\\\ \Theta\left(t,t',\Delta\right)=\frac{1}{1+e^{-2(t-t')/\Delta}}\\\\ \textbf{t}_{0}=0.4~\mathrm{fm}, \quad \textbf{t}_{1}=1~\mathrm{fm}, \quad \Delta=0.15~\mathrm{fm} \end{array}$$

What has been computed

We compute the light-quark, fermionically connected contribution to a_{μ}^{SD} and a_{μ}^{W} in the iso-symmetric limit $m_{u}=m_{d}$, neglecting α_{em} effects.

$$J_{\mu}(x) = \underbrace{(q_{u} + q_{d}) \ \bar{\psi}_{\ell}(x) \gamma_{\mu} \psi_{\ell}(x)}_{J_{\mu}^{\ell}} + \sum_{f \neq u, d} \underbrace{q_{f} \ \bar{\psi}_{f}(x) \gamma_{\mu} \psi_{f}(x)}_{\text{not considered here}}$$
$$V^{\ell}(t) \equiv \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \langle J_{i}^{\ell}(\vec{x}, t) J_{i}^{\ell}(0) \rangle = (q_{u}^{2} + q_{d}^{2}) \times \underbrace{\qquad}_{\bar{\ell}}$$
$$- (q_{u} + q_{d})^{2} \times \underbrace{\qquad}_{\ell}$$

Relevance of the intermediate window Tension in previous lattice determinations of $a^{W}_{\mu}(light, conn., isoQCD)$. 3.7σ discrepancy between BMW and *R*-ratio in the total a^{W}_{μ} .

In the SD and intermediate windows the analysis of the systematics is facilitated as the tail of the correlator $V_{\ell}(t)$ does not contribute.

Simulation details

Four (\simeq) physical point ensembles, with $a \in [0.058 \text{ fm} - 0.082 \text{ fm}]$. $L \sim 5.2 \text{ fm}$ and $L \sim 7.8 \text{ fm}$ to control Finite Size Effects (FSEs).

ensemble	β	V/a^4	<i>a</i> (fm)	$a\mu_\ell$	M_{π} (MeV)	<i>L</i> (fm)	$M_{\pi}L$
cB211.072.64	1.778	$64^3 \times 128$	0.0816 (3)	0.00072	136.8 (0.5)	5.22	3.62
cB211.072.96	1.778	$96^3 imes 192$	0.0816 (3)	0.00072	136.7 (0.5)	7.83	5.43
cC211.060.80	1.836	$80^3 imes 160$	0.0694 (3)	0.00060	134.3 (0.5)	5.55	3.78
cD211.054.96	1.900	$96^3 imes 192$	0.0577 (2)	0.00054	138.9 (0.5)	5.53	3.90

ensemble	Z _V	Z _A	
cB211.072.64	0.709932 (7)	0.71403 (77)	
cB211.072.96	0.709950 (5)	0.71577 (35)	
cC211.060.80	0.728477 (5)	0.73803 (47)	
cD211.054.96	0.746595 (5)	0.76134 (27)	

- Renormalization Constants at sub-permille precision.
- $N_f = 2 + 1 + 1$ flavors.

- Iwasaki action for gluons.
- Wilson-clover twisted mass fermions at maximal twist for quarks (automatic O(a) improvement).

The vector-vector correlator $V_{\ell}(t)$

 Light-quark propagator evaluated using 10³ stochastic sources.

- Signal visible up to $t \sim 3 \text{ fm}$.
- Careful treatment of the tail only needed for a_{μ}^{LD} ,

Two different ways to approach the continuum limit

 $J^{\ell,OS}_{\mu} \propto \bar{\psi}^+_{\ell} \gamma_{\mu} \psi^+_{\ell} \quad (\text{RC: } Z_V).$ $J^{\ell,tm}_{\mu} \propto \bar{\psi}^+_{\ell} \gamma_{\mu} \psi^-_{\ell} \quad (\text{RC: } Z_A).$

- The two (renormalized) currents differ by $\mathcal{O}(a^2)$ lattice artifacts, and possibly $\mathcal{O}(a^2)$ FSEs.
- \pm is the sign of the twisted Wilson parameter.

Short-distance contribution

- Good agreement between OS and tm after extrapolating with a simple linear fit in a² only data points with (≃) same M_πL.
- FSEs on the OS determination of a^{SD}_{μ} absent within accuracy.

Extrapolation of the SD contribution (PRELIMINARY)

$$\begin{aligned} & \text{Fitting Ansatz} \qquad \left[\xi \equiv (M_{\pi}/4\pi f_{\pi})^{2}\right] \\ & a_{\mu}^{SD;tm}(L,a,\xi) = a_{\mu}^{SD}(phys.) \times \left(1 + A_{m}(\xi - \xi_{phys}) + D_{1}^{tm} \cdot a^{2}\right) \times \\ & \times \left(1 + a^{2}\xi \cdot D_{L} \cdot \frac{1}{(M_{\pi}L)^{3/2}}e^{-M_{\pi}L}\right) , \\ & a_{\mu}^{SD;OS}(L,a,\xi) = a_{\mu}^{SD}(phys.) \times \left(1 + A_{m}(\xi - \xi_{phys}) + D_{1}^{OS} \cdot a^{2}\right) \end{aligned}$$

- Included fits with a⁴ or a²αⁿ_s(1/a) terms to evaluate systematics.
- Best fits with n = 0.
- Fits combined using AIC.

$$\mathsf{a}_{\mu}^{\mathsf{SD}}=\mathsf{49.41}\;(\mathsf{18})\times\mathsf{10}^{-10}$$

Intermediate window

- Approximate a² scaling on the OS determination.
- No FSEs on OS. Visible FSEs on tm and large discretization effects.

Data must be corrected for FSEs, M_{π} -dependence. a^4 corrections to scaling must be included.

Extrapolation of the intermediate window (PRELIMINARY)

- Lattice data well fitted including an a⁴ term on the tm determination of a^W_μ.
- Also fits with $a^2 \alpha_s^n(1/a)$ terms.

$$a_{\mu}^{W}=$$
 204.2 (1.2) $imes$ 10 $^{-10}$

Summary

10

Conclusions

- We performed a first-principle evaluation of the isoQCD light-connected contribution to the short-distance and intermediate time windows.
- Thanks to our dedicated simulations at the (\simeq) physical point, and to a high-statistics computation of the V–V correlator, we achieved a relative precision of $\simeq 0.5\%$ on a_{μ}^{SD} and a_{μ}^{W} .
- Our preliminary result for a^W_μ is between the determination of RBC/UKQCD (agreement at $\sim 0.7\sigma$) and the one from BMW (agreement at $\sim 1.4\sigma$).

Work in progress

- Analysis of the isoQCD light-disconnected contribution to a^{SD}_µ, a^W_µ.
- Inclusion of the strange and charm contributions.
- Evaluation of a_{μ}^{LD} .
- In the future: strong IB, $\alpha_{\it em}$ contributions.

Thanks for your attention

Backup slides

Effective lepton mass/window trick

We introduce effective (lattice) values for both the muon mass m_{μ}^{eff} , and for the window parameters t_0^{eff} , t_1^{eff} , Δ^{eff} .

$$m_{\mu}^{eff} \equiv m_{\mu} \left(rac{aX}{ar{X}}
ight), \ t_0^{eff} \equiv t_0 \left(rac{aX}{ar{X}}
ight), \ t_1^{eff} \equiv t_1 \left(rac{aX}{ar{X}}
ight), \ \Delta^{eff} \equiv \Delta \left(rac{aX}{ar{X}}
ight).$$

- *aX* is an hadronic quantity extracted from lattice correlators.
- \overline{X} can be either $X^{phys.}$ or the ensemble average $\langle X \rangle$.

$$a^{W}_{\mu}(m^{\text{eff}}_{\mu}, t^{\text{eff}}_{0}, t^{\text{eff}}_{1}, \Delta^{\text{eff}}) = 4\alpha^{2}_{em} \sum_{t/a=1}^{T} \overbrace{\tilde{\mathcal{K}}_{\mu}(t/a, m^{\text{eff}}_{\mu})}^{\text{dimensionless}} \cdot \left(a^{3}V_{\ell}(t/a)\right) \cdot \left[\Theta(t/a, t^{\text{eff}}_{0}, \Delta^{\text{eff}}) - \Theta(t/a, t^{\text{eff}}_{1}, \Delta^{\text{eff}})\right]$$

- Advantage: Insensitive to the uncertainty on scale setting.
- We use the ELMW trick for a^W_μ , with $X = M_\pi, \bar{X} = \langle M_\pi \rangle$.

Hadronic determination of Z_A

We define:

$$R_A(t) = 2\mu_\ell rac{C_{PP}^{OS}(t)}{\partial_t C_{AP}^{OS}(t)}$$

P and *A* are pseudoscalar and axial local bare current in C_{AP} and C_{PP} . In the large time limit $t/a \gg 1$ (X = tm, OS):

$$C_{PP}^{X}(t) \to |G_{\pi}^{X}|^{2} rac{e^{-M_{\pi}^{X}t} + e^{-M_{\pi}^{X}(T-t)}}{2M_{\pi}^{X}}, R_{A}(t) \to 2a\mu_{\ell} rac{Z_{A}}{f_{\pi}^{OS}} rac{G_{\pi}^{OS}}{M_{\pi}^{OS}\sinh\left(aM_{\pi}^{OS}
ight)}$$

We impose (true up to $\mathcal{O}(a^2)$ lattice artifacts):

$$f_{\pi}^{OS}=f_{\pi}^{tm}=2a\mu_\ellrac{G_{\pi}^{tm}}{M_{\pi}^{tm}\sinh\left(aM_{\pi}^{tm}
ight)}$$

and using $\frac{Z_P}{Z_S} = \frac{G_{\pi}^{0S}}{G_{\pi}^{tm}}$, we can extract Z_A through

$$ar{R}_{A}(t)\equiv R_{A}(t)rac{M_{\pi}^{OS}\sinh\left(aM_{\pi}^{OS}
ight)}{M_{\pi}^{tm}\sinh\left(aM_{\pi}^{tm}
ight)}rac{Z_{S}}{Z_{P}}
ightarrow Z_{A}$$

$ar{R}_{\!A}$ on the three physical point ensembles at (\simeq) same $M_{\pi}L$

