Analytic Evaluation of the NNLO virtual corrections to Muon-Electron scattering

Manoj Kumar Mandal
INFN \& University of Padova
In collaboration with
R. Bonciani, A. Broggio, S. Di Vita, A. Ferroglia, S. Laporta, P. Mastrolia, L. Mattiazzi, M. Passera,
A. Primo, J. Ronca, U. Schubert, W. J. Torres Bobadilla, and F. Tramontano

Strong 2020, Remote Seminar
26th November, 2021
G.A. 754496

Motivation

$a_{\mu}{ }^{\operatorname{EXP}}=(116592089 \pm 63) \times 10-11[0.54 \mathrm{ppm}]$ BNLE E821
$a_{\mu}{ }^{\mathrm{EXP}}=(116592040 \pm 54) \times 10-11$ [0.46ppm] FNAL E989 Run 1
$a_{\mu}{ }^{E X P}=(116592061 \pm 41) \times 10^{-11}[0.35 p p m] W^{2}$

Motivation:

Leading hadronic contribution computed via the usual dispersive (timelike) formula:

$$
\begin{aligned}
& a_{\mu}^{\text {HLO }}=\frac{1}{4 \pi^{3}} \int_{m_{\pi}^{2}}^{\infty} d s K(s) \sigma_{\text {had }}^{(0)}(s) \\
& K(s)=\int_{0}^{1} d x \frac{x^{2}(1-x)}{x^{2}+(1-x)\left(s / m_{\mu}^{2}\right)}
\end{aligned}
$$

Regular Article - Experimental Physics

Alternatively, simply exchanging the x and s integrations:

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLO}} & =\frac{\alpha}{\pi} \int_{0}^{1} d x(1-x) \Delta \alpha_{\mathrm{had}}[t(x)] \\
t(x) & =\frac{x^{2} m_{\mu}^{2}}{x-1}<0
\end{aligned}
$$

The European PhYsical Journal

Measuring the leading hadronic contribution to the muon $\boldsymbol{g - 2}$ via μe scattering
G. Abbiendi ${ }^{1, \mathrm{a}}$, C. M. Carloni Calame ${ }^{2, \mathrm{~b}}$, U. Marconi ${ }^{3, \mathrm{c}}{ }^{(D)}$, C. Matteuzzi ${ }^{4, \mathrm{~d}}$, G. Montagna ${ }^{2,5, \mathrm{e}}$, O. Nicrosini ${ }^{2}$ M. Passera ${ }^{6, \mathrm{~g}}$, F. Piccinini $^{2, \mathrm{~h}}$, R. Tenchini ${ }^{7, \mathrm{i}}$, L. Trentadue ${ }^{8,4, \mathrm{j}}$, G. Venanzoni ${ }^{9, \mathrm{k}}$

See talk by Stefano Laporta,
Umberto Marconi, Giovanni Abbiendi
$\Delta a_{\text {had }}(t)$ is the hadronic contribution to the space-like running of α : proposal to measure $a_{\mu}{ }^{H L O}$ via scattering data!

Muon-Electron Scattering @ NNLO

Review

Theory for muon-electron scattering @ 10 ppm

A report of the MUonE theory initiative
P. Banerjee ${ }^{1}$, C. M. Carloni Calame ${ }^{2}$, M. Chiesa ${ }^{3}$, S. Di Vita ${ }^{4}$, T. Engel ${ }^{1,5}$, M. Fael 6, S. Laporta ${ }^{7,8}$, P. Mastrolia ${ }^{7,8}$, G. Montagna ${ }^{2,9}$, O. Nicrosini ${ }^{2}$, G. Ossola ${ }^{10}$, M. Passera ${ }^{8}$, F. Piccinini ${ }^{2}$, A. Primo ${ }^{5}$, J. Ronca ${ }^{11}$, A. Signer ${ }^{1,5, a}$,
W. J. Torres Bobadilla ${ }^{11}$, L. Trentadue ${ }^{12,13}$, Y. Ulrich ${ }^{1,5}$, G. Venanzoni ${ }^{14}$

$$
\int\left[\frac{V V_{4}}{\epsilon^{4}}+\frac{V V_{3}}{\epsilon^{3}}+\frac{V V_{2}}{\epsilon^{2}}+\frac{V V_{1}}{\epsilon^{1}}+V V_{0}\right] d \phi_{2}
$$

Double Virtual

$$
\int\left[\frac{R V_{2}}{\epsilon^{2}}+\frac{R V_{1}}{\epsilon^{1}}+R V_{0}\right] d \phi_{3}
$$

Real Virtual
[Budassi, Carloni Calame, Chiesa, Del Pio, Hasan Montagna, Nicrosini, Piccinini (2021)]
[Carloni Calame, Chiesa, Hasan, Montagna, Nicrosini, Piccinini (2020)]
$\int\left[R R_{0}\right] d \phi_{4}$

Double Real

Muon-Electron Scattering @ NNLO
 The European

Eur. Phys. J. C (2020) 80:591
https://doi.org/10.1140/epjc/s10052-020-8138-9

PhYSICAL JOURNAL C

Review

Theory for muon-electron scattering @ 10ppm

A report of the MUonE theory initiative
P. Banerjee ${ }^{1}$, C. M. Carloni Calame ${ }^{2}$, M. Chiesa ${ }^{3}$, S. Di Vita 4, T. Engel ${ }^{1,5}$, M. Fael 6, S. Laporta ${ }^{7,8}$, P. Mastrolia ${ }^{7,8}$, G. Montagna ${ }^{2,9}$, O. Nicrosini ${ }^{2}$, G. Ossola ${ }^{10}$, M. Passera ${ }^{8}$, F. Piccinini ${ }^{2}$, A. Primo ${ }^{5}$, J. Ronca ${ }^{11}$, A. Signer ${ }^{1,5, \mathrm{a}}$,
W. J. Torres Bobadilla ${ }^{11}$, L. Trentadue ${ }^{12,13}$, Y. Ulrich ${ }^{1,5}$, G. Venanzoni ${ }^{14}$
[Carloni Calame, Chiesa, Hasan, Montagna, Nicrosini, Piccinini (2020)]

See talk by Ettore Budassi, Tim Engel

$$
\int\left[\frac{R V_{2}}{\epsilon^{2}}+\frac{R V_{1}}{\epsilon^{1}}+R V_{0}\right] d \phi_{3}
$$

Real Virtual

$$
\int\left[R R_{0}\right] d \phi_{4}
$$

Double Real

This talk is towards the computation of the complete 2-Loop Virtual Amplitude

Muon-Electron Scattering @ NNLO

Eur. Phys. J. C (2020) 80:591
https://doi.org/10.1140/epjc/s10052-020-8138-9

The European
PhYSICAL JOURNAL C

Review

Theory for muon-electron scattering @ 10ppm

A report of the MUonE theory initiative
P. Banerjee ${ }^{1}$, C. M. Carloni Calame ${ }^{2}$, M. Chiesa ${ }^{3}$, S. Di Vita ${ }^{4}$, T. Engel 1,5, M. Fael 6, S. Laporta ${ }^{7,8}$, P. Mastrolia ${ }^{7,8}$, G. Montagna ${ }^{2,9}$, O. Nicrosini 2, G. Ossola ${ }^{10}$, M. Passera ${ }^{8}$, F. Piccinini ${ }^{2}$, A. Primo ${ }^{5}$, J. Ronca ${ }^{11}$, A. Signer ${ }^{1,5, \mathrm{a}}$,
W. J. Torres Bobadilla ${ }^{11}$, L. Trentadue ${ }^{12,13}$, Y. Ulrich ${ }^{1,5}$, G. Venanzoni ${ }^{14}$

The two-loop four-fermion scattering amplitude in ${ }^{(1)}$

Di-Muon Production

$e^{-}+\mu^{+} \rightarrow e^{-}+\mu^{+}$

$$
e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}
$$

Amplitude for Di-muon Production

$$
e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow \mu^{-}\left(p_{3}\right)+\mu^{+}\left(p_{4}\right) \quad \left\lvert\, \begin{aligned}
& m_{e}=0 \\
& m_{\mu}=M
\end{aligned}\right.
$$

$$
\begin{gathered}
s=\left(p_{1}+p_{2}\right)^{2} \\
t=\left(p_{1}-p_{3}\right)^{2} \\
u=\left(p_{2}-p_{3}\right)^{2} \\
s+t+u=2 M^{2}
\end{gathered}
$$

$$
\mathcal{A}_{\mathrm{b}}\left(\alpha_{\mathrm{b}}\right)=4 \pi \alpha_{\mathrm{b}} S_{\epsilon} \mu^{-2 \epsilon}\left[\mathcal{A}_{\mathrm{b}}^{(0)}+\left(\frac{\alpha_{\mathrm{b}}}{\pi}\right) \mathcal{A}_{\mathrm{b}}^{(1)}+\left(\frac{\alpha_{\mathrm{b}}}{\pi}\right)^{2} \mathcal{A}_{\mathrm{b}}^{(2)}\right]
$$

$$
\mathcal{M}_{\mathrm{b}}^{(n)}=\frac{1}{4} \sum_{\text {spins }} 2 \operatorname{Re}\left(\mathcal{A}_{\mathrm{b}}^{(0) *} \mathcal{A}_{\mathrm{b}}^{(n)}\right)
$$

1-Loop Diagrams

6 Diagrams
$\mathcal{M}^{(1)}=A^{(1)}+n_{l} B_{l}^{(1)}+n_{h} C_{h}^{(1)}$

2-Loop Diagrams

69 Diagrams

0 Due to Furry's Theorem

$\mathcal{M}^{(2)}=A^{(2)}+n_{l} B_{l}^{(2)}+n_{h} C_{h}^{(2)}+n_{l}^{2} D_{l}^{(2)}$
$+n_{h} n_{l} E_{h l}^{(2)}+n_{h}^{2} F_{h}^{(2)}$

mu mu
年

Computation of the Loop Amplitude

Mathematica Based Package AIDA

Generation of Diagram by FeynArts

Spin sums, Dirac Algebra, Trace by FeynCalc
Adaptive Integrand Decomposition
IBP Reduction via Reduze and KIRA

$$
\mathcal{M}_{\mathrm{b}}^{(n)}=\left(S_{\epsilon}\right)^{n} \int \prod_{i=1}^{n} \frac{d^{d} k_{i}}{(2 \pi)^{d}} \sum_{G} \frac{N_{G}}{\prod_{\sigma \in G} D_{\sigma}}
$$

Master Integrals

- The differential equation method has been the most successful in the computation of the Mls
[Kotikov (1990)] [Gehrmann, Remiddi (1999)]
[Henn (2013)] [Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Schubert, Tancredi (2014)]

UV Renormalization

Wave functions of External particles - Onshell

$$
\psi_{\mathrm{b}}=\sqrt{Z_{2}} \psi, \quad A_{\mathrm{b}}^{\mu}=\sqrt{Z_{3}} A^{\mu}, \quad M_{\mathrm{b}}=Z_{M} M
$$

Mass of the muon - Onshell

Renormalized QED Vertex $\quad \mathcal{L}_{\mathrm{int}}=e_{\mathrm{b}} \bar{\psi}_{\mathrm{b}} A_{\mathrm{b}} \psi_{\mathrm{b}}=e Z_{1} \bar{\psi} \not A \psi \quad$| $e Z_{1}$ | $=e_{\mathrm{b}} Z_{2} \sqrt{Z_{3}}$ |
| ---: | :--- |
| Z_{1} | $=Z_{2}$ | QED Ward Identity

Coupling constant - $\overline{\mathrm{MS}}$

$$
\alpha_{\mathrm{b}} \equiv e_{\mathrm{b}}^{2} / 4 \pi \quad \alpha_{\mathrm{b}} S_{\epsilon}=\alpha\left(\mu^{2}\right) \mu^{2 \epsilon} Z_{\alpha}^{\overline{\mathrm{MS}}}
$$

$$
\mathcal{A}=Z_{2, f} Z_{2, F} \mathcal{A}_{\mathrm{b}}\left(\alpha_{\mathrm{b}}=\alpha_{\mathrm{b}}(\alpha), M_{\mathrm{b}}=M_{\mathrm{b}}(M)\right)
$$

$$
Z_{j}=1+\left(\frac{\alpha}{\pi}\right) \delta Z_{j}^{(1)}+\left(\frac{\alpha}{\pi}\right)^{2} \delta Z_{j}^{(2)}+\mathcal{O}\left(\alpha^{3}\right)
$$

UV Renormalization

Renormalized Amplitude

$$
\mathcal{A}(\alpha)=4 \pi \alpha\left[\mathcal{A}^{(0)}+\left(\frac{\alpha}{\pi}\right) \mathcal{A}^{(1)}+\left(\frac{\alpha}{\pi}\right)^{2} \mathcal{A}^{(2)}\right]
$$

$$
\begin{aligned}
\mathcal{A}^{(0)} & =\mathcal{A}_{\mathrm{b}}^{(0)} \\
\mathcal{A}^{(1)} & =\mathcal{A}_{\mathrm{b}}^{(1)}+\left(\delta Z_{\alpha}^{(1)}+\delta Z_{F}^{(1)}\right) \mathcal{A}_{\mathrm{b}}^{(0)} \\
\mathcal{A}^{(2)} & =\mathcal{A}_{\mathrm{b}}^{(2)}+\left(2 \delta Z_{\alpha}^{(1)}+\delta Z_{F}^{(1)}\right) \mathcal{A}_{\mathrm{b}}^{(1)} \\
& +\left(\delta Z_{\alpha}^{(2)}+\delta Z_{F}^{(2)}+\delta Z_{f}^{(2)}+\delta Z_{F}^{(1)} \delta Z_{\alpha}^{(1)}\right) \mathcal{A}_{\mathrm{b}}^{(0)} \\
& +\delta Z_{M}^{(1)} \mathcal{A}_{\mathrm{b}}^{(1, \text { mass CT })}
\end{aligned}
$$

+m

 $2 \times \neq \operatorname{onc}_{x}^{\alpha}$

$\delta Z_{f}^{(2)}=n_{h}\left(\frac{L_{\mu}}{8}+\frac{1}{16 \epsilon}-\frac{5}{96}\right)$

IR Factorization

$$
\begin{aligned}
& \left.\mathcal{M}^{(1)}\right|_{\text {poles }}=\left.\frac{1}{2} Z_{1}^{\mathrm{IR}} \mathcal{M}^{(0)}\right|_{\text {poles }} \\
& \left.\mathcal{M}^{(2)}\right|_{\text {poles }}=\left.\frac{1}{8}\left[\left(Z_{2}^{\mathrm{IR}}-\left(Z_{1}^{\mathrm{IR}}\right)^{2}\right) \mathcal{M}^{(0)}+2 Z_{1}^{\mathrm{IR}} \mathcal{M}^{(1)}\right]\right|_{\text {poles }}
\end{aligned}
$$

[Becher, Neubert (2009)]
[Hill (2017)]

IR Renormalization Factor

$$
\ln Z_{\mathrm{IR}}=\frac{\alpha}{4 \pi}\left(\frac{\Gamma_{0}^{\prime}}{4 \epsilon^{2}}+\frac{\Gamma_{0}}{2 \epsilon}\right)+\left(\frac{\alpha}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{0} \Gamma_{0}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{1}^{\prime}-4 \beta_{0} \Gamma_{0}}{16 \epsilon^{2}}+\frac{\Gamma_{1}}{4 \epsilon}\right)+\mathcal{O}\left(\alpha^{3}\right)
$$

$$
\Gamma^{\prime}(\alpha) \equiv \frac{\partial}{\partial \ln \mu} \Gamma(\alpha)=\sum_{n=0}^{\infty} \Gamma_{i}^{\prime}\left(\frac{\alpha}{4 \pi}\right)^{n+1}
$$

$$
\Gamma=\gamma_{\mathrm{cusp}}(\alpha) \ln \left(-\frac{s}{\mu^{2}}\right)+2 \gamma_{\mathrm{cusp}}(\alpha) \ln \left(\frac{t-M^{2}}{u-M^{2}}\right)+\gamma_{\mathrm{cusp}, \mathrm{M}}(\alpha, s)+2 \gamma_{h}(\alpha)+2 \gamma_{\psi}(\alpha)
$$

Numerical Result

$$
\begin{aligned}
& \mathcal{M}^{(0)}=\frac{1}{s^{2}}\left[2(1-\epsilon) s^{2}+4\left(t-M^{2}\right)^{2}+4 s t\right] \\
& \mathcal{M}^{(1)}=A^{(1)}+n_{l} B_{l}^{(1)}+n_{h} C_{h}^{(1)} \\
& \mathcal{M}^{(2)}=A^{(2)}+n_{l} B_{l}^{(2)}+n_{h} C_{h}^{(2)}+n_{l}^{2} D_{l}^{(2)}+n_{h} n_{l} E_{h l}^{(2)}+n_{h}^{2} F_{h}^{(2)}
\end{aligned}
$$

- At 2 Loop there are 4063 GPLs up to weight 4

$$
G\left(w_{n}, \ldots, w_{1} ; \tau\right) \equiv \int_{0}^{\tau} \frac{d t}{t-w_{n}} G\left(w_{n-1}, \ldots, w_{1} ; t\right)
$$

- 18 Letters $w_{i}=w_{i}(x, y, z)$

$$
\begin{gathered}
-t / M^{2}=x \\
-s / M^{2}=(1-y)^{2} / y \\
-\left(u-M^{2}\right) /\left(t-M^{2}\right)=z^{2} / y
\end{gathered}
$$

- The GPLs are evaluated by Ginac [PolyLogTools interface] and HandyG

Further checks

$$
\text { Kinematical point } s / M^{2}=5, t / M^{2}=-5 / 4, \mu=M
$$

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^{0}	ϵ
$\mathcal{M}^{(0)}$	-	-	-	-	$\frac{181}{100}$	-2
$A^{(1)}$	-	-	$-\frac{181}{100}$	1.99877525	22.0079572	-11.7311017
$B_{l}^{(1)}$	-	-	100	-	-0.069056030	4.94328573
$C_{h}^{(1)}$	-	-	-	-	-2.24934027	2.54943566
$A^{(2)}$	$\frac{181}{400}$	-0.499387626	-35.4922919	19.4997261	48.8842283	-
$B_{l}^{(2)}$	400	$-\frac{181}{400}$	0.785712779	-16.1576674	-3.75247701	-
$C_{h}^{(2)}$	-	-	1.12467013	-9.50785825	-25.8771503	-
$D_{l}^{(2)}$	-	-	-	-	-3.96845688	-
$E_{h l}^{(2)}$	-	-	-	-	-4.88512563	-
$F_{h}^{(2)}$	-	-	-	-	-0.158490810	-

Results: One Loop

$\mathcal{M}^{(1)}=A^{(1)}+n_{l} B_{l}^{(1)}+n_{h} C_{h}^{(1)} \quad \mathcal{M}^{(1)}=\frac{\mathcal{M}_{-2}^{(1)}}{\epsilon^{2}}+\frac{\mathcal{M}_{-1}^{(1)}}{\epsilon}+\mathcal{M}_{0}^{(1)}$

$$
\begin{aligned}
& \eta=s /\left(4 M^{2}\right)-1 \\
& \phi=-\left(t-M^{2}\right) / s
\end{aligned}
$$

$$
\frac{1}{2}\left(1-\sqrt{\frac{\eta}{1+\eta}}\right) \leq \phi \leq \frac{1}{2}\left(1+\sqrt{\frac{\eta}{1+\eta}}\right)
$$

Results: Two Loop

$$
\mathcal{M}^{(2)}=A^{(2)}+n_{l} B_{l}^{(2)}+n_{h} C_{h}^{(2)}+n_{l}^{2} D_{l}^{(2)}+n_{h} n_{l} E_{h l}^{(2)}+n_{h}^{2} F_{h}^{(2)}
$$

$$
\mathcal{M}^{(2)}=\frac{\mathcal{M}_{-4}^{(2)}}{\epsilon^{4}}+\ldots+\frac{\mathcal{M}_{-1}^{(2)}}{\epsilon}+\mathcal{M}_{0}^{(2)}
$$

Conclusion and Outlook

『First complete analytic 2-Loop amplitude for four fermion scattering in QED with a pair of massive leptons (The computation of the 2-Loop amplitude is done within the framework of AIDA [Automated] (I)Complete agreement with the universal IR poles predicted by SCET (VWe have created a grid of 10500 points for the 2-Loop amplitude

■One crucial input for the theory initiative at MUonE

Inclusion of the effects of the mass of the Muon
Mitov, Moch (2006) Becher, Melnikov (2007) Engel, Gnendiger, Signer, Ulrich (2019)
Heller (2021)
\&Possible synergy with the MC efforts to include this matrix element Pavia and PSI Group
Roundtable discussion: To discuss / understand how the grids of the $e \mu$ amplitude should be prepared to felicitate the inclusion to MC generators Pavia and PSI Group
\&All the ingredients are available for the full analytic evaluation of the 2-Loop amplitude of $q \bar{q} \rightarrow t \bar{t}$

