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Muon g-2: FNAL confirms BNL μ

aμEXP = (116592089 ± 63) x 10-11 [0.54ppm]  BNL E821 

aμEXP = (116592040 ± 54) x 10-11 [0.46ppm]  FNAL E989 Run 1 

aμEXP = (116592061 ± 41) x 10-11 [0.35ppm]  WA 

FNAL aims at 16 x 10-11. First 4 runs completed, 5th soon. 

Muon g-2 proposal at J-PARC: Phase-1 with ~ BNL precision.

4.2 σ

3.7 σ

3.3 σ

(WP20)
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Δαhad(t) is the hadronic contribution to the space-like running 
of  α: proposal to measure aμHLO  via scattering data! 

  Leading hadronic contribution computed via the usual dispersive  
    (timelike) formula:

  Alternatively, simply exchanging the x and s integrations:
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Abstract We propose a new experiment to measure the run-
ning of the electromagnetic coupling constant in the space-
like region by scattering high-energy muons on atomic elec-
trons of a low-Z target through the elastic processµ e → µ e.
The differential cross section of this process, measured as a
function of the squared momentum transfer t = q2 < 0,
provides direct sensitivity to the leading-order hadronic con-
tribution to the muon anomaly aHLO

µ . By using a muon beam
of 150 GeV, with an average rate of ∼1.3 ×107 muon/s, cur-
rently available at the CERN North Area, a statistical uncer-
tainty of ∼0.3% can be achieved on aHLO

µ after two years of
data taking. The direct measurement of aHLO

µ via µe scat-
tering will provide an independent determination, competi-
tive with the time-like dispersive approach, and consolidate
the theoretical prediction for the muon g-2 in the Standard
Model. It will allow therefore a firmer interpretation of the
measurements of the future muon g-2 experiments at Fermi-
lab and J-PARC.
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1 Introduction

In searching for new physics, low-energy high-precision
measurements are complementary to the LHC high-energy
frontier. The long-standing (3–4)σ discrepancy between
the experimental value of the muon anomalous magnetic
moment aµ = (g − 2)/2 and the Standard Model (SM)
prediction, "aµ(Exp − SM) ∼ (28 ± 8) × 10−10 [1,2],
has been considered during these years as one of the most
intriguing indications of physics beyond the SM. However,
the accuracy of the SM prediction, 5 × 10−10, is limited by
strong interaction effects, which cannot be computed pertur-
batively at low energies. Long time ago, by using analytic-
ity and unitarity, it was shown [3–5] that the leading-order
(LO) hadronic contribution to the muon g-2, aHLO

µ , could be
computed via a dispersion integral of the hadron production
cross section in e+e− annihilation at low-energy. The present
error on aHLO

µ , ∼ 4 × 10−10, with a fractional accuracy of
0.6%, constitutes the main uncertainty of the SM prediction.
An alternative evaluation of aHLO

µ can be obtained by lattice
QCD calculations [6–11]. Even if current lattice QCD results
are not yet competitive with those obtained with the disper-
sive approach via time-like data, their errors are expected
to decrease significantly in the next few years [12,13]. The
O(α3)hadronic light-by-light contribution,aHLbL

µ , which has
the second largest error in the theoretical evaluation, con-
tributing with an uncertainty of (2.5–4) ×10−10, cannot at
present be determined from data and its calculation relies on
the use of specific models [14–18].
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Abstract We review the current status of the theory predic-
tions for elastic µ-e scattering, describing the recent activ-
ities and future plans of the theory initiative related to the
proposed MUonE experiment.

1 Introduction

There is renewed interest in obtaining precise theoretical pre-
dictions for elastic muon-electron scattering. This is to be
seen in the context of MUonE [1], a recent proposal to per-
form a very precise measurement of µ-e scattering [2]. A
comparison of experimental data with perturbative calcula-
tions can be used to extract the hadronic vacuum polarisation
(HVP) through its contribution to the running of the QED
coupling α. This follows the original idea of using scattering
data to extract the leading hadronic contribution aHLO

µ to the
muon (g−2) from the effective electromagnetic coupling in

A. Signer and Y. Ulrich: Organisers of the 2nd WorkStop/ThinkStart.

This review is the result of the 2nd WorkStop/ThinkStart that took
place 4–7 February 2019 at the University of Zurich, as well as the
Theory Kickoff Workshop, 4–5 September 2017, Padova and the
MITP Workshop, 19–23 February 2018,Mainz.

a e-mail: adrian.signer@psi.ch (corresponding author)

the space-like region [3]. The measurement of the running
of alpha in the space-like region from small-angle Bhabha
scattering was proposed in [4] and done in [5].

For the planned MUonE experiment, the effect of the HVP
changes the differential cross section of µ-e scattering by up
to O(10−3), depending on the scattering angle of the outgo-
ing electron. In order to obtain aHLO

µ with a statistical error
similar to current evaluations, the HVP needs to be extracted
from µ-e data with a precision below one percent. Hence,
the accuracy of the total experimental and theoretical error
should not exceed the 10 ppm level.

The proposal of MUonE is to scatter a 150 GeV muon
beam on a Beryllium fixed target. In order to obtain sufficient
statistics and reduce multiple-scattering effects [6], the target
(about 60 cm in total) is split into many (about 40) thin layers.
The measurements are done in several stand-alone stations
of about 1 m length and 10 × 10 cm2 transverse dimension.
The scattering angles of the electron θe and the muon θµ (in
the lab frame) are measured very precisely, but no further
kinematic information is assumed to be available.

From an idealised point of view we thus consider

µ±(p1) e−(p2) → µ±(p3) e−(p4)+ X, (1)

123
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from µ-e data with a precision below one percent. Hence,
the accuracy of the total experimental and theoretical error
should not exceed the 10 ppm level.

The proposal of MUonE is to scatter a 150 GeV muon
beam on a Beryllium fixed target. In order to obtain sufficient
statistics and reduce multiple-scattering effects [6], the target
(about 60 cm in total) is split into many (about 40) thin layers.
The measurements are done in several stand-alone stations
of about 1 m length and 10 × 10 cm2 transverse dimension.
The scattering angles of the electron θe and the muon θµ (in
the lab frame) are measured very precisely, but no further
kinematic information is assumed to be available.

From an idealised point of view we thus consider

µ±(p1) e−(p2) → µ±(p3) e−(p4)+ X, (1)

123

6

Muon-Electron Scattering @ NNLO

Double Virtual Real Virtual Double Real

This talk is towards the computation of the complete 2-Loop Virtual Amplitude

Z 
V V4

✏4
+

V V3

✏3
+

V V2

✏2
+

V V1

✏1
+ V V0

�
d�2

<latexit sha1_base64="vneqSv36smTuHcGarofLj8IcfWo="></latexit>

Z 
RV2

✏2
+

RV1

✏1
+ RV0

�
d�3

<latexit sha1_base64="a1H5f7TX5FuxwPjoTb9aSFtAp3s="></latexit>

Z
[RR0] d�4

<latexit sha1_base64="gmTyze0cDwYszsL8Us9ohHK1oXA=">AAACFHicbVDLSsNAFJ3UV62vqks3g0UQhJLUgi4LblzWYh/QhDCZTJqhkwczN0IJ/Qg3/oobF4q4deHOv3HaZqGtF4Y5nHMv99zjpYIrMM1vo7S2vrG5Vd6u7Ozu7R9UD496KskkZV2aiEQOPKKY4DHrAgfBBqlkJPIE63vjm5nef2BS8SS+h0nKnIiMYh5wSkBTbvXC9hLhq0mkv9zmMWBbsACGnY5r2pKPQnCwb6chd5tTt1oz6+a88CqwClBDRbXd6pftJzSLWAxUEKWGlpmCkxMJnAo2rdiZYimhYzJiQw1jEjHl5POjpvhMMz4OEqmftjVnf0/kJFIz37ozIhCqZW1G/qcNMwiunZzHaQYspotFQSYwJHiWEPa5ZBTERANCJddeMQ2JJBR0jhUdgrV88iroNerWZb1x16y1mkUcZXSCTtE5stAVaqFb1EZdRNEjekav6M14Ml6Md+Nj0Voyiplj9KeMzx8N757B</latexit>

See talk by Ettore Budassi, Tim Engel

MPP-2021-84; ZU-TH 29/21

The two-loop four-fermion scattering amplitude in QED

R. Bonciani,1, ∗ A. Broggio,
2, † S. Di Vita,3, 4 A. Ferroglia,

5, 6, ‡ M. K. Mandal,7, 8, § P. Mastrolia,
8, 7, ¶

L. Mattiazzi,
7, 8, � A. Primo,9, ∗∗ J. Ronca,10, †† U. Schubert,11, ‡‡ W. J. Torres Bobadilla,12, §§ and F. Tramontano10, ¶¶

1
Dipartim

ento di Fisica, Universit
à di Roma “La Sapienza” and INFN Sezione di Roma, 00185

Roma, Italy

2
Università

degli Studi di Milano-Bicocca
and INFN Sezione di Milano-Bicocca,

Piazza della Scienza 3, I–2012
6 Milano, Italy

3
INFN, Sezione di Milano, Via Celoria

16, 20133
Milano, Italy

4
Dipartim

ento di Fisica, Universit
à degli Studi di Milano, Via Celoria

16, 20133
Milano, Italy

5
Physics

Departm
ent, New York City College

of Technology,

The City Universit
y of New York, 300 Jay Street, Brooklyn

, NY 11201,
USA

6
The Graduat

e School and University
Center, The City University

of New York, 365 Fifth Avenue, New York, NY 10016,
USA

7
INFN, Sezione di Padova,

Via Marzolo
8, 35131

Padova,
Italy

8
Dipartim

ento di Fisica e Astronomia, Universit
à di Padova,

Via Marzolo
8, 35131

Padova,
Italy

9
Departm

ent of Physics,
Universit

y of Zürich,
CH-8057

Zürich,
Switzerla

nd

10Dipartim
ento di Fisica, Universit

à di Napoli Federico
II and INFN, Sezione di Napoli,

I-8012
6 Napoli,

Italy

11Departm
ent of Physics,

Universit
y at Buffalo, The State Universit

y of New York, Buffalo 14260,
USA

12Max-Planck-Institut für Physik,
Werner-Heisenberg-In

stitut,
80805

München, Germany.

(Dated: November 19, 2021)

We present the first fully analytic evaluation of the transition amplitude for the scattering of a

mass-less into a massive pair of fermions at the two-loop level in Quantum Electrodynamics. Our

result is an essential ingredient for the determination of the electromagnetic coupling within scattering

reactions, beyond the currently known accuracy, which has a crucial impact on the evaluation of the

anomalous magnetic moment of the muon. It will allow, in particular, for a precise determination of

the leading hadronic contribution to the (g � 2)µ in the MUonE experiment at CERN, and therefore

can be used to shed light on the current discrepancy between the Standard Model prediction and the

experimental measurement for this important physical observable.

Introduct
ion – The Muon g-2 collaboration at Fermilab

has recently confirmed [1] that the observed magnetic ac-

tivity of the muon is compatible with the earlier findings

obtained at Brookhaven National Lab [2–4]. The anoma-

lous magnetic moment of the muon, (g � 2)µ, shows a

4.2� deviation from the prediction of the Standard Model

of elementary particles (SM) [5]. However, the theoretical

determination of this quantity, obtained via dispersive

techniques, might be affected by the improper estimation

of the hadronic corrections to the muon–photon interac-

tion, which could be responsible of such a discrepancy.

Alternative results obtained through lattice QCD calcula-

tions point towards a possible mitigation of the tension

between theory and experiments [6].

Recently, a novel experiment, MUonE, has been pro-

posed at CERN, with the goal of measuring the running

of the effective electromagnetic coupling at low momen-

tum transfer in the space-like region [7]. As proposed

in [8], this measurement would provide an independent

determination of the leading hadronic contribution to the

(g � 2)µ. Such a measurement relies on the precise deter-

mination of the angles of the outgoing particles emerging

from the elastic muon-electron scattering [7, 9–11]. To

extract the running of the effective electromagnetic cou-

pling from the experimental data, the pure perturbative

electromagnetic contribution to the electron-muon cross

section must be controlled at least up to the second order

in the fine-structure constant [12].

The scattering of a muon µ off an electron e in Quantum

Electrodynamics (QED) is the simplest reaction among

fundamental leptons of different flavors, and represents a

paradigmatic case of charged particles interaction medi-

ated by a neutral gauge boson. The Leading Order (LO)

process is known since the mid 1950’s [13], while the Next-

to-Leading Order (NLO) radiative corrections were com-

puted in [14–20], and more recently studied in [21]. The

two-loop diagrams contributing to the Next-to-Next-to-

leading order (NNLO) virtual corrections were evaluated

in [22] assuming purely massless fermions. At the ener-

gies of the MUonE experiment, the muon mass plays an

important role for the description of the radiative pattern

and cannot be neglected [12]. Nevertheless, the evaluation

of Feynman integrals usually becomes more demanding

as the number of massive particles present either in the

loops or in the external states increases.

NNLO QED corrections involve the two-loop amplitude

along with the real-virtual and the double-real emission

terms. While the matrix elements for the last two contri-

butions can be calculated without difficulties using stan-

dard techniques, their integration over the corresponding

phase spaces is complicated by the presence of infrared

(soft and collinear) singularities, as well as the presence of

masses in both the initial and final state of the scattering

process. In order to obtain predictions for fully differen-

tial observables, it is necessary to adopt a subtraction

procedure. The Abelian nature of the interaction leads us

to believe that the computational techniques already used

for other processes at the LHC can be successfully adapted

to this purpose [23, 24]. Preliminary Monte Carlo simula-

tions for µe scattering have already been performed by

[Banerjee, Engel, Signer, Ulrich (2020)]
[Banerjee, Engel, Schalch, Signer, Ulrich (2021)]
[Budassi, Carloni Calame, Chiesa, Del Pio, Hasan, 

Montagna, Nicrosini, Piccinini (2021)]
[Carloni Calame, Chiesa, Hasan, Montagna, 

Nicrosini, Piccinini (2020)]
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Di-Muon Production
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Amplitude for Di-muon Production
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mµ = M

2

including parts of the NNLO corrections [25, 26]. These
simulations account for a subset of the two-loop graphs,
not yet including the four-point diagrams with complete
dependence on the lepton masses. The complete two-loop
amplitude is then a missing crucial ingredient for the
computation of the full NNLO QED corrections.

In this work, we present the first fully analytic eval-
uation of the renormalized two-loop amplitude for four
fermion scattering in QED, f� + f+ + F� + F+

! 0,
with f and F representing a massless and a massive lep-
ton respectively. In the past years, we have developed
efficient mathematical techniques for the evaluation of
multi-loop integrals in dimensional regularization, such as
the adaptive integrand decomposition [27–29] and the Mag-

nus exponential method for differential equations [30, 31].
The combination of these techniques with the more tradi-
tional decomposition through integration-by-parts identi-

ties (IBPs) [32, 33], allowed us to obtain for the first time
a complete analytic formula for the renormalized two-loop
amplitude of a 2 ! 2 process with a non-vanishing mass
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The one- and two-loop amplitudes presented in this
Letter can be applied, for instance, to the case where
the light fermion is an electron, f = e, and the heavy
fermion is a muon, F = µ, and can be used in the elastic
scattering eµ ! eµ, as well as in crossing related pro-
cesses, such e+e� ! µ+µ�. If the elastic scattering is
the key process of the MUonE experiment, the muon
pair production in e+e� annihilation is a key process
for the center-of-mass energy calibration at present and
future e+e� colliders, such as BESIII [34], BELLE-II [35],
CEPC [36], and FCCee [37]. Therefore, a precise knowl-
edge of the radiative effects would improve the precision
of the results obtainable at these machines.

The structure of the infrared (IR) singularities of the
massless and massive gauge theory scattering amplitudes
has been studied in [38–53]. In this work, the determi-
nation of the virtual NNLO corrections is complemented
by the investigation of the IR singularities of scattering
amplitudes in QED, which involve massive particles, and
whose universal structure can be determined within Soft
Collinear Effective Theory (SCET), along the lines of
the method presented in [46, 53]. The agreement of the
residual IR poles coming from the direct diagrammatic
calculus of the renormalized amplitude with the IR poles
predicted within SCET is an important validation of the
diagrammatic calculation. We explicitly verify this agree-
ment in the case of f�f+

! F�F+ process.
Additionally, let us observe that the two-loop dia-

grams considered here, also appear in the (color stripped)
Abelian subset of graphs contributing to heavy-quark pair
production in Quantum Chromodynamics (QCD) [54–58].
The similarities of the analytic structure of the two-loop
amplitude between qq̄ ! tt̄ in QCD and f�f+
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in QED, where q and f are treated as massless, is ex-
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Recently, the evaluation of integrals coming from
planar diagrams [59–61] indicates that the computation
of four-fermion scattering amplitudes at two loops in
QED, by keeping full dependence on the masses of all the
involved leptons, might become the subject of near-future
investigation.

Scattering Amplitude – We consider the four-fermion
scattering process involving a mass-less and a massive
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In this work, we present the first fully analytic eval-
uation of the renormalized two-loop amplitude for four
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fermion is a muon, F = µ, and can be used in the elastic
scattering eµ ! eµ, as well as in crossing related pro-
cesses, such e+e� ! µ+µ�. If the elastic scattering is
the key process of the MUonE experiment, the muon
pair production in e+e� annihilation is a key process
for the center-of-mass energy calibration at present and
future e+e� colliders, such as BESIII [34], BELLE-II [35],
CEPC [36], and FCCee [37]. Therefore, a precise knowl-
edge of the radiative effects would improve the precision
of the results obtainable at these machines.

The structure of the infrared (IR) singularities of the
massless and massive gauge theory scattering amplitudes
has been studied in [38–53]. In this work, the determi-
nation of the virtual NNLO corrections is complemented
by the investigation of the IR singularities of scattering
amplitudes in QED, which involve massive particles, and
whose universal structure can be determined within Soft
Collinear Effective Theory (SCET), along the lines of
the method presented in [46, 53]. The agreement of the
residual IR poles coming from the direct diagrammatic
calculus of the renormalized amplitude with the IR poles
predicted within SCET is an important validation of the
diagrammatic calculation. We explicitly verify this agree-
ment in the case of f�f+

! F�F+ process.
Additionally, let us observe that the two-loop dia-

grams considered here, also appear in the (color stripped)
Abelian subset of graphs contributing to heavy-quark pair
production in Quantum Chromodynamics (QCD) [54–58].
The similarities of the analytic structure of the two-loop
amplitude between qq̄ ! tt̄ in QCD and f�f+
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in QED, where q and f are treated as massless, is ex-
ploited to test the structure of the singularities coming

FIG. 1: Representative diagrams for the process
f�f+

! F�F+: tree-level (top), one-loop graphs
(middle), two-loop graphs (bottom). Thin lines indicate
a lepton f while thick lines indicate a lepton F . Wavy

lines are photons.

from QED diagrams through a tuned comparison to the
Abelian part of known results in QCD.

Recently, the evaluation of integrals coming from
planar diagrams [59–61] indicates that the computation
of four-fermion scattering amplitudes at two loops in
QED, by keeping full dependence on the masses of all the
involved leptons, might become the subject of near-future
investigation.

Scattering Amplitude – We consider the four-fermion
scattering process involving a mass-less and a massive
lepton pair,

f�(p1) + f+(p2) ! F�(p3) + F+(p4) , (1)

with mf = 0 and mF = M 6= 0. The Mandelstam
invariants, defined as s = (p1 + p2)2, t = (p1 � p3)2, and
u = (p2 � p3)2, satisfy the condition s+ t+ u = 2M2.

The four-point bare amplitude Ab admits a perturba-
tive expansion in the bare coupling constant ↵b ⌘ e2b/4⇡,
which, up to the inclusion of the second-order corrections,
reads

Ab (↵b) = 4⇡↵b S✏ µ
�2✏

⇥


A

(0)
b +

⇣↵b

⇡

⌘
A

(1)
b +

⇣↵b

⇡

⌘2
A

(2)
b

�
, (2)

where A
(n)
b indicates the n-loop bare amplitude, S✏ ⌘

(4⇡e��E )✏ and µ is the ’t Hooft mass scale. The Leading
Order (LO) term A

(0)
b , referred to as Born term, receives

contribution from a single tree-level Feynman diagram,
shown in the upper row of Fig. 1. The squared LO
amplitude, summed over the final spins and averaged over
the initial states, reads,

M
(0)
b =

1

4

X

spins

|A
(0)
b |

2

=
1

s2
⇥
2(1� ✏)s2 + 4

�
t�M2

�2
+ 4st

⇤
, (3)

for external states treated in d = 4 � 2✏ space-time di-
mensions according to the conventional dimensional reg-
ularization (CDR) scheme [62], that we use throughout

2

including parts of the NNLO corrections [25, 26]. These
simulations account for a subset of the two-loop graphs,
not yet including the four-point diagrams with complete
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in internal and external lines.

The one- and two-loop amplitudes presented in this
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future e+e� colliders, such as BESIII [34], BELLE-II [35],
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QED, by keeping full dependence on the masses of all the
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with mf = 0 and mF = M 6= 0. The Mandelstam
invariants, defined as s = (p1 + p2)2, t = (p1 � p3)2, and
u = (p2 � p3)2, satisfy the condition s+ t+ u = 2M2.
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2

including parts of the NNLO corrections [25, 26]. These
simulations account for a subset of the two-loop graphs,
not yet including the four-point diagrams with complete
dependence on the lepton masses. The complete two-loop
amplitude is then a missing crucial ingredient for the
computation of the full NNLO QED corrections.

In this work, we present the first fully analytic eval-
uation of the renormalized two-loop amplitude for four
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! 0,
with f and F representing a massless and a massive lep-
ton respectively. In the past years, we have developed
efficient mathematical techniques for the evaluation of
multi-loop integrals in dimensional regularization, such as
the adaptive integrand decomposition [27–29] and the Mag-

nus exponential method for differential equations [30, 31].
The combination of these techniques with the more tradi-
tional decomposition through integration-by-parts identi-

ties (IBPs) [32, 33], allowed us to obtain for the first time
a complete analytic formula for the renormalized two-loop
amplitude of a 2 ! 2 process with a non-vanishing mass
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The one- and two-loop amplitudes presented in this
Letter can be applied, for instance, to the case where
the light fermion is an electron, f = e, and the heavy
fermion is a muon, F = µ, and can be used in the elastic
scattering eµ ! eµ, as well as in crossing related pro-
cesses, such e+e� ! µ+µ�. If the elastic scattering is
the key process of the MUonE experiment, the muon
pair production in e+e� annihilation is a key process
for the center-of-mass energy calibration at present and
future e+e� colliders, such as BESIII [34], BELLE-II [35],
CEPC [36], and FCCee [37]. Therefore, a precise knowl-
edge of the radiative effects would improve the precision
of the results obtainable at these machines.

The structure of the infrared (IR) singularities of the
massless and massive gauge theory scattering amplitudes
has been studied in [38–53]. In this work, the determi-
nation of the virtual NNLO corrections is complemented
by the investigation of the IR singularities of scattering
amplitudes in QED, which involve massive particles, and
whose universal structure can be determined within Soft
Collinear Effective Theory (SCET), along the lines of
the method presented in [46, 53]. The agreement of the
residual IR poles coming from the direct diagrammatic
calculus of the renormalized amplitude with the IR poles
predicted within SCET is an important validation of the
diagrammatic calculation. We explicitly verify this agree-
ment in the case of f�f+

! F�F+ process.
Additionally, let us observe that the two-loop dia-

grams considered here, also appear in the (color stripped)
Abelian subset of graphs contributing to heavy-quark pair
production in Quantum Chromodynamics (QCD) [54–58].
The similarities of the analytic structure of the two-loop
amplitude between qq̄ ! tt̄ in QCD and f�f+
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in QED, where q and f are treated as massless, is ex-
ploited to test the structure of the singularities coming
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QED, by keeping full dependence on the masses of all the
involved leptons, might become the subject of near-future
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invariants, defined as s = (p1 + p2)2, t = (p1 � p3)2, and
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the key process of the MUonE experiment, the muon
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Additionally, let us observe that the two-loop dia-

grams considered here, also appear in the (color stripped)
Abelian subset of graphs contributing to heavy-quark pair
production in Quantum Chromodynamics (QCD) [54–58].
The similarities of the analytic structure of the two-loop
amplitude between qq̄ ! tt̄ in QCD and f�f+

! F�F+

in QED, where q and f are treated as massless, is ex-
ploited to test the structure of the singularities coming

FIG. 1: Representative diagrams for the process
f�f+

! F�F+: tree-level (top), one-loop graphs
(middle), two-loop graphs (bottom). Thin lines indicate
a lepton f while thick lines indicate a lepton F . Wavy

lines are photons.

from QED diagrams through a tuned comparison to the
Abelian part of known results in QCD.

Recently, the evaluation of integrals coming from
planar diagrams [59–61] indicates that the computation
of four-fermion scattering amplitudes at two loops in
QED, by keeping full dependence on the masses of all the
involved leptons, might become the subject of near-future
investigation.

Scattering Amplitude – We consider the four-fermion
scattering process involving a mass-less and a massive
lepton pair,

f�(p1) + f+(p2) ! F�(p3) + F+(p4) , (1)

with mf = 0 and mF = M 6= 0. The Mandelstam
invariants, defined as s = (p1 + p2)2, t = (p1 � p3)2, and
u = (p2 � p3)2, satisfy the condition s+ t+ u = 2M2.

The four-point bare amplitude Ab admits a perturba-
tive expansion in the bare coupling constant ↵b ⌘ e2b/4⇡,
which, up to the inclusion of the second-order corrections,
reads
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for external states treated in d = 4 � 2✏ space-time di-
mensions according to the conventional dimensional reg-
ularization (CDR) scheme [62], that we use throughout
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including parts of the NNLO corrections [25, 26]. These
simulations account for a subset of the two-loop graphs,
not yet including the four-point diagrams with complete
dependence on the lepton masses. The complete two-loop
amplitude is then a missing crucial ingredient for the
computation of the full NNLO QED corrections.

In this work, we present the first fully analytic eval-
uation of the renormalized two-loop amplitude for four
fermion scattering in QED, f� + f+ + F� + F+

! 0,
with f and F representing a massless and a massive lep-
ton respectively. In the past years, we have developed
efficient mathematical techniques for the evaluation of
multi-loop integrals in dimensional regularization, such as
the adaptive integrand decomposition [27–29] and the Mag-

nus exponential method for differential equations [30, 31].
The combination of these techniques with the more tradi-
tional decomposition through integration-by-parts identi-

ties (IBPs) [32, 33], allowed us to obtain for the first time
a complete analytic formula for the renormalized two-loop
amplitude of a 2 ! 2 process with a non-vanishing mass
in internal and external lines.

The one- and two-loop amplitudes presented in this
Letter can be applied, for instance, to the case where
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fermion is a muon, F = µ, and can be used in the elastic
scattering eµ ! eµ, as well as in crossing related pro-
cesses, such e+e� ! µ+µ�. If the elastic scattering is
the key process of the MUonE experiment, the muon
pair production in e+e� annihilation is a key process
for the center-of-mass energy calibration at present and
future e+e� colliders, such as BESIII [34], BELLE-II [35],
CEPC [36], and FCCee [37]. Therefore, a precise knowl-
edge of the radiative effects would improve the precision
of the results obtainable at these machines.

The structure of the infrared (IR) singularities of the
massless and massive gauge theory scattering amplitudes
has been studied in [38–53]. In this work, the determi-
nation of the virtual NNLO corrections is complemented
by the investigation of the IR singularities of scattering
amplitudes in QED, which involve massive particles, and
whose universal structure can be determined within Soft
Collinear Effective Theory (SCET), along the lines of
the method presented in [46, 53]. The agreement of the
residual IR poles coming from the direct diagrammatic
calculus of the renormalized amplitude with the IR poles
predicted within SCET is an important validation of the
diagrammatic calculation. We explicitly verify this agree-
ment in the case of f�f+

! F�F+ process.
Additionally, let us observe that the two-loop dia-

grams considered here, also appear in the (color stripped)
Abelian subset of graphs contributing to heavy-quark pair
production in Quantum Chromodynamics (QCD) [54–58].
The similarities of the analytic structure of the two-loop
amplitude between qq̄ ! tt̄ in QCD and f�f+

! F�F+

in QED, where q and f are treated as massless, is ex-
ploited to test the structure of the singularities coming

FIG. 1: Representative diagrams for the process
f�f+

! F�F+: tree-level (top), one-loop graphs
(middle), two-loop graphs (bottom). Thin lines indicate
a lepton f while thick lines indicate a lepton F . Wavy

lines are photons.
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contribution from a single tree-level Feynman diagram,
shown in the upper row of Fig. 1. The squared LO
amplitude, summed over the final spins and averaged over
the initial states, reads,

M
(0)
b =

1

4

X

spins

|A
(0)
b |

2

=
1

s2
⇥
2(1� ✏)s2 + 4

�
t�M2

�2
+ 4st

⇤
, (3)

for external states treated in d = 4 � 2✏ space-time di-
mensions according to the conventional dimensional reg-
ularization (CDR) scheme [62], that we use throughout
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of the results obtainable at these machines.
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nation of the virtual NNLO corrections is complemented
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in QED, where q and f are treated as massless, is ex-
ploited to test the structure of the singularities coming

FIG. 1: Representative diagrams for the process
f�f+

! F�F+: tree-level (top), one-loop graphs
(middle), two-loop graphs (bottom). Thin lines indicate
a lepton f while thick lines indicate a lepton F . Wavy

lines are photons.

from QED diagrams through a tuned comparison to the
Abelian part of known results in QCD.

Recently, the evaluation of integrals coming from
planar diagrams [59–61] indicates that the computation
of four-fermion scattering amplitudes at two loops in
QED, by keeping full dependence on the masses of all the
involved leptons, might become the subject of near-future
investigation.

Scattering Amplitude – We consider the four-fermion
scattering process involving a mass-less and a massive
lepton pair,

f�(p1) + f+(p2) ! F�(p3) + F+(p4) , (1)

with mf = 0 and mF = M 6= 0. The Mandelstam
invariants, defined as s = (p1 + p2)2, t = (p1 � p3)2, and
u = (p2 � p3)2, satisfy the condition s+ t+ u = 2M2.

The four-point bare amplitude Ab admits a perturba-
tive expansion in the bare coupling constant ↵b ⌘ e2b/4⇡,
which, up to the inclusion of the second-order corrections,
reads
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where A
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b indicates the n-loop bare amplitude, S✏ ⌘

(4⇡e��E )✏ and µ is the ’t Hooft mass scale. The Leading
Order (LO) term A
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b , referred to as Born term, receives

contribution from a single tree-level Feynman diagram,
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amplitude, summed over the final spins and averaged over
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mensions according to the conventional dimensional reg-
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read

M
(n)
b =

1

4

X

spins

2Re(A(0)⇤
b A

(n)
b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the

[Bonciani, Broggio, Di Vita, Ferroglia, MKM, Mastrolia, Mattiazzi, Primo, Ronca, Schubert, Torres Bobadilla, Tramontano (2021)]
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FIG. 3: Three-dimensional plots of the finite terms M
(i)
0 ,

i = 1, 2 of the renormalized one- and two-loop
amplitudes, in Eqs. (18a), (18b), where nl = 1, nh = 1.

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

IR poles of M(2) directly in the production region; the
analytical expression of M

(2) is computed in the non-
physical region, s < 0, t < 0, and its analytic continuation
is performed numerically. The renormalized one- and two-
loop interference terms are conveniently decomposed in
gauge-invariant components, labeled by the number of
massless (nl) and massive (nh) closed fermion loops

M
(1) = A(1) + nl B

(1)
l + nh C

(1)
h , (19a)

M
(2) = A(2) + nl B

(2)
l + nh C

(2)
h + n2

lD
(2)
l

+nh nl E
(2)
hl + n2

h F
(2)
h . (19b)

In Fig. 3, we plot the finite part of one- and two-loop
renormalized amplitudes M

(i)
0 , i = 1, 2 in the physical

region. The threshold singularity is clearly visible and
well reproduced up to very small c.m.e., showing full
control of the numerical stability. The complete formula
for the analytic expression of the renormalized two-loop
amplitude is rather large (⇠ 60MB) and cannot be
reported here. The figures are obtained by evaluating
this formula with high precision on 10,500 evenly spaced
grid points, by employing HandyG [80] and Ginac [81]
(via the package PolyLogtools [82]) for the numerical
evaluation of GPLs. Each evaluation required from
seconds CPU time in the almost flat region to up about
1,500 s CPU time for the configurations approaching the
threshold singularity. These grids are available from the
authors upon request.

Other tests – The master integrals for the Abelian
diagrams in QED can be employed to construct the
analytic expressions of some gauge-invariant contributions
to the two-loop amplitude of the process qq̄ ! tt̄ in
QCD [54–57]: in particular, our results (evaluated in the
region of heavy-lepton pair production, and properly
accounting for the color factors) agree with the numerical
coefficients Eq

l , E
q
h, F

q
l , F

q
lh, F

q
h provided in the Table 1

of Ref. [54, 55, 57], which receive contributions from
Abelian diagrams only; the agreement on the poles of
the above mentioned color coefficients, at other phase-
space points, has been verified using the formula for the

IR poles of two-loop amplitudes in QCD, given in Ref. [83].

Conclusion – We presented the first fully analytic evalua-
tion of the amplitude for the scattering of four fermions in
Quantum Electrodynamics, involving two different types
of leptons, one of which is treated as massless, up to the
second order corrections in the electromagnetic coupling
constant. The calculation were carried out within the
dimensional regularization scheme, and the infrared pole
structure of the renormalized amplitude is found to obey
the universal behaviour predicted by the Soft Collinear
Effective Theory. Our result constitutes the first example
of a complete scattering amplitude for 2 ! 2 processes,
with massless and massive particles in the loops as well
as in the external states, involving planar and non-planar
diagrams at two loops, analytically evaluated.

Our analytic results can be directly applied to the
study, at NNLO accuracy, of massive lepton pair
production in massless lepton annihilation, and the
elastic scattering of massive and massless leptons,
in QED, as well as to determine the Abelian contri-
bution to the scattering of light and heavy quarks in QCD.

Notes – Interested readers can find the expressions of the
UV renormalization constants, the IR renormalization
factor used throughout this Letter and additional
plots for the individual contributions of the coefficients
A,B, . . . , F of Eq. (19) in the Supplemental Material.
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FIG. 3: Three-dimensional plots of the finite terms M
(i)
0 ,

i = 1, 2 of the renormalized one- and two-loop
amplitudes, in Eqs. (18a), (18b), where nl = 1, nh = 1.

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

IR poles of M(2) directly in the production region; the
analytical expression of M

(2) is computed in the non-
physical region, s < 0, t < 0, and its analytic continuation
is performed numerically. The renormalized one- and two-
loop interference terms are conveniently decomposed in
gauge-invariant components, labeled by the number of
massless (nl) and massive (nh) closed fermion loops

M
(1) = A(1) + nl B

(1)
l + nh C

(1)
h , (19a)

M
(2) = A(2) + nl B

(2)
l + nh C

(2)
h + n2

lD
(2)
l

+nh nl E
(2)
hl + n2

h F
(2)
h . (19b)

In Fig. 3, we plot the finite part of one- and two-loop
renormalized amplitudes M

(i)
0 , i = 1, 2 in the physical

region. The threshold singularity is clearly visible and
well reproduced up to very small c.m.e., showing full
control of the numerical stability. The complete formula
for the analytic expression of the renormalized two-loop
amplitude is rather large (⇠ 60MB) and cannot be
reported here. The figures are obtained by evaluating
this formula with high precision on 10,500 evenly spaced
grid points, by employing HandyG [80] and Ginac [81]
(via the package PolyLogtools [82]) for the numerical
evaluation of GPLs. Each evaluation required from
seconds CPU time in the almost flat region to up about
1,500 s CPU time for the configurations approaching the
threshold singularity. These grids are available from the
authors upon request.

Other tests – The master integrals for the Abelian
diagrams in QED can be employed to construct the
analytic expressions of some gauge-invariant contributions
to the two-loop amplitude of the process qq̄ ! tt̄ in
QCD [54–57]: in particular, our results (evaluated in the
region of heavy-lepton pair production, and properly
accounting for the color factors) agree with the numerical
coefficients Eq

l , E
q
h, F

q
l , F

q
lh, F

q
h provided in the Table 1

of Ref. [54, 55, 57], which receive contributions from
Abelian diagrams only; the agreement on the poles of
the above mentioned color coefficients, at other phase-
space points, has been verified using the formula for the

IR poles of two-loop amplitudes in QCD, given in Ref. [83].

Conclusion – We presented the first fully analytic evalua-
tion of the amplitude for the scattering of four fermions in
Quantum Electrodynamics, involving two different types
of leptons, one of which is treated as massless, up to the
second order corrections in the electromagnetic coupling
constant. The calculation were carried out within the
dimensional regularization scheme, and the infrared pole
structure of the renormalized amplitude is found to obey
the universal behaviour predicted by the Soft Collinear
Effective Theory. Our result constitutes the first example
of a complete scattering amplitude for 2 ! 2 processes,
with massless and massive particles in the loops as well
as in the external states, involving planar and non-planar
diagrams at two loops, analytically evaluated.

Our analytic results can be directly applied to the
study, at NNLO accuracy, of massive lepton pair
production in massless lepton annihilation, and the
elastic scattering of massive and massless leptons,
in QED, as well as to determine the Abelian contri-
bution to the scattering of light and heavy quarks in QCD.

Notes – Interested readers can find the expressions of the
UV renormalization constants, the IR renormalization
factor used throughout this Letter and additional
plots for the individual contributions of the coefficients
A,B, . . . , F of Eq. (19) in the Supplemental Material.
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Computation of the Loop Amplitude

Generation of Diagram by FeynArts

Spin sums, Dirac Algebra, Trace by FeynCalc

Adaptive Integrand Decomposition 

IBP Reduction via Reduze and KIRA

Master Integral evaluation

Mathematica Based Package AIDA [Mastrolia, Peraro, Primo, Ronca, Torres Bobadilla (To be Published) ] 

3

the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read

M
(n)
b =

1

4

X

spins

2Re(A(0)⇤
b A

(n)
b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the

3

the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read

M
(n)
b =

1

4

X

spins

2Re(A(0)⇤
b A

(n)
b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)
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Master Integrals
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Figure 1: Two-loop four-point topologies for µe scattering

• For the second two-loop family, which contains topologies T4, T5, T9 and T10 shown

in figure 1,
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For all families, k1 and k2 denote the loop momenta. In the following sections, MIs will
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read
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b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the
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carried out by means of the FeynCalc [64–66] package.
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can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
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bare charge (obtained by applying Eq. (8) to the bare
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nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula
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G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the
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FIG. 2: Diagrams for mass renormalization. The ⇥
symbol represents the insertion of a mass counter-term.

following, these are simply indicated as Zj , with j =
{↵, f, F,M}, respectively. The renormalization constants
admit a perturbative expansions in ↵,

Zj = 1 +
⇣↵
⇡

⌘
�Z(1)

j +
⇣↵
⇡

⌘2
�Z(2)

j +O(↵3) , (12)

and their expressions can be obtained (either directly
or after abelianization) from [57, 76–78]. After substi-
tuting in Eq. (11) the expansions of the bare amplitude,
given in Eq. (2), and the ones of the renormalization con-
stants, given in Eq. (12), the UV renormalized two-loop
amplitude reads
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�
, (13)

up to second order corrections in ↵. The n-loop coeffi-
cients A

(n) are given in terms of the ones appearing in
the bare amplitude as

A
(0) = A

(0)
b , (14a)

A
(1) = A
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b +
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�Z(1)
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b , (14b)
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The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
b

(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].

The structure of the IR poles is governed by an anoma-
lous dimension � that has the following structure,
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where the �i (i 2 {cusp; cusp,M;h; }) coefficients up to
O(↵2) are extracted in analogy to the QCD case [46, 53,
79]. We compute the analytic expression of the two-loop
amplitude M

(2) for the process f�f+
! F�F+ both in

the non-physical region s < 0, t < 0 as well as directly
in the production region. In this physical region, the
imaginary part of the anomalous dimension in Eq. (15) is
computed by adding an infinitesimal positive imaginary
part to s. One can then introduce the IR renormalization
factor ZIR,
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where �i,�0
i and �i are the coefficients of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,
respectively. The IR poles of the nth-order term M

(n) can
be calculated using ZIR and the lower order contributions,
M

(0), . . . ,M(n�1). In particular, the IR pole structures
at one and two loops are found to be,

M
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. (17b)

All functions M
(n) in the r.h.s. of Eqs. (17) must be

evaluated in d = 4 � 2✏ space-time dimensions. The
factors ZIR

i are the coefficients of the series expansion of
ZIR in powers of ↵/(4⇡).

The IR poles structure in Eqs. (17), reconstructed
starting from the tree-level and one-loop amplitudes, is
in perfect agreement with the one obtained starting from
Eq. (14c) and directly calculating the two-loop diagrams.
This provides a non trivial test of the complete two-loop
calculation.

Results – The analytic results of the interference contri-
butions M

(1) and M
(2) are given as Laurent series in ✏

M
(1) =

M
(1)
�2

✏2
+
M

(1)
�1

✏
+M

(1)
0 +M

(1)
1 ✏+O(✏2) , (18a)

M
(2) =

M
(2)
�4

✏4
+ . . .+

M
(2)
�1

✏
+M

(2)
0 +O(✏) . (18b)

The analytical expression of M(1) is computed both in
the non-physical region, and in the pair production region,
s > 4M2, t < 0. The latter is required to predict the
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read

M
(n)
b =

1

4

X

spins

2Re(A(0)⇤
b A

(n)
b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read
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Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,
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where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula
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t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
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2,F , Z
OS

M . To simplify the notation in the
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including parts of the NNLO corrections [25, 26]. These
simulations account for a subset of the two-loop graphs,
not yet including the four-point diagrams with complete
dependence on the lepton masses. The complete two-loop
amplitude is then a missing crucial ingredient for the
computation of the full NNLO QED corrections.

In this work, we present the first fully analytic eval-
uation of the renormalized two-loop amplitude for four
fermion scattering in QED, f� + f+ + F� + F+

! 0,
with f and F representing a massless and a massive lep-
ton respectively. In the past years, we have developed
efficient mathematical techniques for the evaluation of
multi-loop integrals in dimensional regularization, such as
the adaptive integrand decomposition [27–29] and the Mag-

nus exponential method for differential equations [30, 31].
The combination of these techniques with the more tradi-
tional decomposition through integration-by-parts identi-

ties (IBPs) [32, 33], allowed us to obtain for the first time
a complete analytic formula for the renormalized two-loop
amplitude of a 2 ! 2 process with a non-vanishing mass
in internal and external lines.

The one- and two-loop amplitudes presented in this
Letter can be applied, for instance, to the case where
the light fermion is an electron, f = e, and the heavy
fermion is a muon, F = µ, and can be used in the elastic
scattering eµ ! eµ, as well as in crossing related pro-
cesses, such e+e� ! µ+µ�. If the elastic scattering is
the key process of the MUonE experiment, the muon
pair production in e+e� annihilation is a key process
for the center-of-mass energy calibration at present and
future e+e� colliders, such as BESIII [34], BELLE-II [35],
CEPC [36], and FCCee [37]. Therefore, a precise knowl-
edge of the radiative effects would improve the precision
of the results obtainable at these machines.

The structure of the infrared (IR) singularities of the
massless and massive gauge theory scattering amplitudes
has been studied in [38–53]. In this work, the determi-
nation of the virtual NNLO corrections is complemented
by the investigation of the IR singularities of scattering
amplitudes in QED, which involve massive particles, and
whose universal structure can be determined within Soft
Collinear Effective Theory (SCET), along the lines of
the method presented in [46, 53]. The agreement of the
residual IR poles coming from the direct diagrammatic
calculus of the renormalized amplitude with the IR poles
predicted within SCET is an important validation of the
diagrammatic calculation. We explicitly verify this agree-
ment in the case of f�f+

! F�F+ process.
Additionally, let us observe that the two-loop dia-

grams considered here, also appear in the (color stripped)
Abelian subset of graphs contributing to heavy-quark pair
production in Quantum Chromodynamics (QCD) [54–58].
The similarities of the analytic structure of the two-loop
amplitude between qq̄ ! tt̄ in QCD and f�f+

! F�F+

in QED, where q and f are treated as massless, is ex-
ploited to test the structure of the singularities coming

FIG. 1: Representative diagrams for the process
f�f+

! F�F+: tree-level (top), one-loop graphs
(middle), two-loop graphs (bottom). Thin lines indicate
a lepton f while thick lines indicate a lepton F . Wavy

lines are photons.

from QED diagrams through a tuned comparison to the
Abelian part of known results in QCD.

Recently, the evaluation of integrals coming from
planar diagrams [59–61] indicates that the computation
of four-fermion scattering amplitudes at two loops in
QED, by keeping full dependence on the masses of all the
involved leptons, might become the subject of near-future
investigation.

Scattering Amplitude – We consider the four-fermion
scattering process involving a mass-less and a massive
lepton pair,

f�(p1) + f+(p2) ! F�(p3) + F+(p4) , (1)

with mf = 0 and mF = M 6= 0. The Mandelstam
invariants, defined as s = (p1 + p2)2, t = (p1 � p3)2, and
u = (p2 � p3)2, satisfy the condition s+ t+ u = 2M2.

The four-point bare amplitude Ab admits a perturba-
tive expansion in the bare coupling constant ↵b ⌘ e2b/4⇡,
which, up to the inclusion of the second-order corrections,
reads

Ab (↵b) = 4⇡↵b S✏ µ
�2✏

⇥


A

(0)
b +

⇣↵b

⇡

⌘
A

(1)
b +

⇣↵b

⇡

⌘2
A

(2)
b

�
, (2)

where A
(n)
b indicates the n-loop bare amplitude, S✏ ⌘

(4⇡e��E )✏ and µ is the ’t Hooft mass scale. The Leading
Order (LO) term A

(0)
b , referred to as Born term, receives

contribution from a single tree-level Feynman diagram,
shown in the upper row of Fig. 1. The squared LO
amplitude, summed over the final spins and averaged over
the initial states, reads,

M
(0)
b =

1

4

X

spins

|A
(0)
b |

2

=
1

s2
⇥
2(1� ✏)s2 + 4

�
t�M2

�2
+ 4st

⇤
, (3)

for external states treated in d = 4 � 2✏ space-time di-
mensions according to the conventional dimensional reg-
ularization (CDR) scheme [62], that we use throughout
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read
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b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,
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where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula
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t� wn
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with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
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Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS
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M . The
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↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
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tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
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↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the
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FIG. 2: Diagrams for mass renormalization. The ⇥
symbol represents the insertion of a mass counter-term.

following, these are simply indicated as Zj , with j =
{↵, f, F,M}, respectively. The renormalization constants
admit a perturbative expansions in ↵,

Zj = 1 +
⇣↵
⇡

⌘
�Z(1)

j +
⇣↵
⇡

⌘2
�Z(2)

j +O(↵3) , (12)

and their expressions can be obtained (either directly
or after abelianization) from [57, 76–78]. After substi-
tuting in Eq. (11) the expansions of the bare amplitude,
given in Eq. (2), and the ones of the renormalization con-
stants, given in Eq. (12), the UV renormalized two-loop
amplitude reads

A (↵) = 4⇡↵


A

(0) +
⇣↵
⇡

⌘
A

(1) +
⇣↵
⇡

⌘2
A

(2)

�
, (13)

up to second order corrections in ↵. The n-loop coeffi-
cients A

(n) are given in terms of the ones appearing in
the bare amplitude as

A
(0) = A

(0)
b , (14a)

A
(1) = A

(1)
b +

⇣
�Z(1)

↵ + �Z(1)
F

⌘
A

(0)
b , (14b)

A
(2) = A

(2)
b +

⇣
2�Z(1)

↵ + �Z(1)
F

⌘
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(1)
b

+
⇣
�Z(2)

↵ + �Z(2)
F + �Z(2)

f + �Z(1)
F �Z(1)

↵

⌘
A

(0)
b

+ �Z(1)
M A

(1,mass CT)
b . (14c)

The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
b

(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].

The structure of the IR poles is governed by an anoma-
lous dimension � that has the following structure,

� =�cusp (↵) ln

✓
�

s

µ2

◆
+ 2�cusp (↵) ln

✓
t�M2

u�M2

◆

+ �cusp,M (↵, s) + 2�h (↵) + 2� (↵) , (15)

where the �i (i 2 {cusp; cusp,M;h; }) coefficients up to
O(↵2) are extracted in analogy to the QCD case [46, 53,
79]. We compute the analytic expression of the two-loop
amplitude M

(2) for the process f�f+
! F�F+ both in

the non-physical region s < 0, t < 0 as well as directly
in the production region. In this physical region, the
imaginary part of the anomalous dimension in Eq. (15) is
computed by adding an infinitesimal positive imaginary
part to s. One can then introduce the IR renormalization
factor ZIR,

lnZIR =
↵

4⇡

✓
�0
0

4✏2
+

�0

2✏

◆

+
⇣ ↵
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⌘2
 
�
3�0�0

0

16✏3
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�0
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�1

4✏

!

+O
�
↵3
�
, (16)

where �i,�0
i and �i are the coefficients of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,
respectively. The IR poles of the nth-order term M

(n) can
be calculated using ZIR and the lower order contributions,
M

(0), . . . ,M(n�1). In particular, the IR pole structures
at one and two loops are found to be,

M
(1)
���
poles

=
1

2
ZIR
1 M

(0)
���
poles

, (17a)

M
(2)
���
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1
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�
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M
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+2ZIR
1 M

(1)
i���

poles
. (17b)

All functions M
(n) in the r.h.s. of Eqs. (17) must be

evaluated in d = 4 � 2✏ space-time dimensions. The
factors ZIR

i are the coefficients of the series expansion of
ZIR in powers of ↵/(4⇡).

The IR poles structure in Eqs. (17), reconstructed
starting from the tree-level and one-loop amplitudes, is
in perfect agreement with the one obtained starting from
Eq. (14c) and directly calculating the two-loop diagrams.
This provides a non trivial test of the complete two-loop
calculation.

Results – The analytic results of the interference contri-
butions M

(1) and M
(2) are given as Laurent series in ✏
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M
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�2
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�4
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+ . . .+
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(2)
�1
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+M

(2)
0 +O(✏) . (18b)

The analytical expression of M(1) is computed both in
the non-physical region, and in the pair production region,
s > 4M2, t < 0. The latter is required to predict the
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ZIR in powers of ↵/(4⇡).

The IR poles structure in Eqs. (17), reconstructed
starting from the tree-level and one-loop amplitudes, is
in perfect agreement with the one obtained starting from
Eq. (14c) and directly calculating the two-loop diagrams.
This provides a non trivial test of the complete two-loop
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following, these are simply indicated as Zj , with j =
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and their expressions can be obtained (either directly
or after abelianization) from [57, 76–78]. After substi-
tuting in Eq. (11) the expansions of the bare amplitude,
given in Eq. (2), and the ones of the renormalization con-
stants, given in Eq. (12), the UV renormalized two-loop
amplitude reads
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The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
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(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].

The structure of the IR poles is governed by an anoma-
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↵ and A
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renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
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dently be obtained starting from the tree-level and the
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or after abelianization) from [57, 76–78]. After substi-
tuting in Eq. (11) the expansions of the bare amplitude,
given in Eq. (2), and the ones of the renormalization con-
stants, given in Eq. (12), the UV renormalized two-loop
amplitude reads

A (↵) = 4⇡↵


A

(0) +
⇣↵
⇡

⌘
A

(1) +
⇣↵
⇡

⌘2
A

(2)

�
, (13)

up to second order corrections in ↵. The n-loop coeffi-
cients A

(n) are given in terms of the ones appearing in
the bare amplitude as

A
(0) = A

(0)
b , (14a)

A
(1) = A

(1)
b +

⇣
�Z(1)

↵ + �Z(1)
F

⌘
A

(0)
b , (14b)

A
(2) = A

(2)
b +

⇣
2�Z(1)

↵ + �Z(1)
F

⌘
A

(1)
b

+
⇣
�Z(2)

↵ + �Z(2)
F + �Z(2)

f + �Z(1)
F �Z(1)

↵

⌘
A

(0)
b

+ �Z(1)
M A

(1,mass CT)
b . (14c)

The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
b

(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].
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of one-loop diagrams having an insertion of the mass
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ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
b

(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
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at two loops, M(2). The latter two quantities constitute
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In this supplemental material, we provide further

details on the renormalization constants to perform

the UV renormalization, and the IR renormalization

factor for the predictions of the IR poles of the one-

and two-loop four-fermion scattering amplitude in QED,

f� + f+ + F� + F+
! 0, with f and F , representing

massless and a massive leptons, respectively.

Renormalization Constants – The renormalization

constants for the wave functions of the massive and
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constant of the massive lepton admit perturbative
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Additionally, the renormalization constant for the elec-

tromagnetic coupling up to second order in the MS scheme

reads,
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Anomalous dimensions – The structure of the IR poles is

governed by an anomalous dimension � whose structure

reads as,

� =�cusp (↵) ln

✓
�

s

µ2

◆
+ 2�cusp (↵) ln

✓
t�M2

u�M2

◆

+ �cusp,M (↵, s) + 2�h (↵) + 2� (↵) , (9)

[Czakon, Mitov, Moch (2007)]

4

⇥ ⇥ 2⇥ +
2⇥ ⇥

FIG. 2: Diagrams for mass renormalization. The ⇥
symbol represents the insertion of a mass counter-term.

following, these are simply indicated as Zj , with j =
{↵, f, F,M}, respectively. The renormalization constants
admit a perturbative expansions in ↵,

Zj = 1 +
⇣↵
⇡

⌘
�Z(1)

j +
⇣↵
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⌘2
�Z(2)

j +O(↵3) , (12)

and their expressions can be obtained (either directly
or after abelianization) from [57, 76–78]. After substi-
tuting in Eq. (11) the expansions of the bare amplitude,
given in Eq. (2), and the ones of the renormalization con-
stants, given in Eq. (12), the UV renormalized two-loop
amplitude reads
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up to second order corrections in ↵. The n-loop coeffi-
cients A

(n) are given in terms of the ones appearing in
the bare amplitude as
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The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
b

(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].

The structure of the IR poles is governed by an anoma-
lous dimension � that has the following structure,
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where the �i (i 2 {cusp; cusp,M;h; }) coefficients up to
O(↵2) are extracted in analogy to the QCD case [46, 53,
79]. We compute the analytic expression of the two-loop
amplitude M

(2) for the process f�f+
! F�F+ both in

the non-physical region s < 0, t < 0 as well as directly
in the production region. In this physical region, the
imaginary part of the anomalous dimension in Eq. (15) is
computed by adding an infinitesimal positive imaginary
part to s. One can then introduce the IR renormalization
factor ZIR,
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where �i,�0
i and �i are the coefficients of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,
respectively. The IR poles of the nth-order term M

(n) can
be calculated using ZIR and the lower order contributions,
M

(0), . . . ,M(n�1). In particular, the IR pole structures
at one and two loops are found to be,
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All functions M
(n) in the r.h.s. of Eqs. (17) must be

evaluated in d = 4 � 2✏ space-time dimensions. The
factors ZIR

i are the coefficients of the series expansion of
ZIR in powers of ↵/(4⇡).

The IR poles structure in Eqs. (17), reconstructed
starting from the tree-level and one-loop amplitudes, is
in perfect agreement with the one obtained starting from
Eq. (14c) and directly calculating the two-loop diagrams.
This provides a non trivial test of the complete two-loop
calculation.

Results – The analytic results of the interference contri-
butions M

(1) and M
(2) are given as Laurent series in ✏
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The analytical expression of M(1) is computed both in
the non-physical region, and in the pair production region,
s > 4M2, t < 0. The latter is required to predict the
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↵ and A
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loop corrections after UV renormalization can indepen-
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ployed to study the infrared structure of QCD amplitudes
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The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A
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(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].
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↵ and A
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Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].

The structure of the IR poles is governed by an anoma-
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where the �i (i 2 {cusp; cusp,M;h; }) coefficients up to
O(↵2) are extracted in analogy to the QCD case [46, 53,
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amplitude M

(2) for the process f�f+
! F�F+ both in
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computed by adding an infinitesimal positive imaginary
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where �i,�0
i and �i are the coefficients of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,
respectively. The IR poles of the nth-order term M

(n) can
be calculated using ZIR and the lower order contributions,
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(0), . . . ,M(n�1). In particular, the IR pole structures
at one and two loops are found to be,
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All functions M
(n) in the r.h.s. of Eqs. (17) must be

evaluated in d = 4 � 2✏ space-time dimensions. The
factors ZIR

i are the coefficients of the series expansion of
ZIR in powers of ↵/(4⇡).

The IR poles structure in Eqs. (17), reconstructed
starting from the tree-level and one-loop amplitudes, is
in perfect agreement with the one obtained starting from
Eq. (14c) and directly calculating the two-loop diagrams.
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The analytical expression of M(1) is computed both in
the non-physical region, and in the pair production region,
s > 4M2, t < 0. The latter is required to predict the
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FIG. 1: Three-dimensional plots of the coefficients (finite

part) appearing in the decomposition of the renormalized

one-loop amplitude in Eq. (25a).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

with the relevant coefficients,

�0
0 =� 2�cusp

0 ,

�0
1 =� 2�cusp

1 . (19)
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Furthermore, in order to implement the inverse decou-

pling transformation for the massive leptons, in such a

way that one works with nl+nh active leptons, one needs

to include an additional term proportional to nh in ZIR
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Amplitudes – The Born term is shown in Eq.(3) of the

Letter, reading as,
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read

M
(n)
b =

1

4

X

spins

2Re(A(0)⇤
b A

(n)
b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
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Z2,` for any external lepton `, hence,
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where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
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Analytic Evaluation – The analytic evaluation of M(1)
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and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,
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where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
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FIG. 3: Three-dimensional plots of the finite terms M
(i)
0 ,

i = 1, 2 of the renormalized one- and two-loop
amplitudes, in Eqs. (18a), (18b), where nl = 1, nh = 1.

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

IR poles of M(2) directly in the production region; the
analytical expression of M

(2) is computed in the non-
physical region, s < 0, t < 0, and its analytic continuation
is performed numerically. The renormalized one- and two-
loop interference terms are conveniently decomposed in
gauge-invariant components, labeled by the number of
massless (nl) and massive (nh) closed fermion loops

M
(1) = A(1) + nl B

(1)
l + nh C

(1)
h , (19a)

M
(2) = A(2) + nl B

(2)
l + nh C

(2)
h + n2

lD
(2)
l

+nh nl E
(2)
hl + n2

h F
(2)
h . (19b)

In Fig. 3, we plot the finite part of one- and two-loop
renormalized amplitudes M

(i)
0 , i = 1, 2 in the physical

region. The threshold singularity is clearly visible and
well reproduced up to very small c.m.e., showing full
control of the numerical stability. The complete formula
for the analytic expression of the renormalized two-loop
amplitude is rather large (⇠ 60MB) and cannot be
reported here. The figures are obtained by evaluating
this formula with high precision on 10,500 evenly spaced
grid points, by employing HandyG [80] and Ginac [81]
(via the package PolyLogtools [82]) for the numerical
evaluation of GPLs. Each evaluation required from
seconds CPU time in the almost flat region to up about
1,500 s CPU time for the configurations approaching the
threshold singularity. These grids are available from the
authors upon request.

Other tests – The master integrals for the Abelian
diagrams in QED can be employed to construct the
analytic expressions of some gauge-invariant contributions
to the two-loop amplitude of the process qq̄ ! tt̄ in
QCD [54–57]: in particular, our results (evaluated in the
region of heavy-lepton pair production, and properly
accounting for the color factors) agree with the numerical
coefficients Eq

l , E
q
h, F

q
l , F

q
lh, F

q
h provided in the Table 1

of Ref. [54, 55, 57], which receive contributions from
Abelian diagrams only; the agreement on the poles of
the above mentioned color coefficients, at other phase-
space points, has been verified using the formula for the

IR poles of two-loop amplitudes in QCD, given in Ref. [83].

Conclusion – We presented the first fully analytic evalua-
tion of the amplitude for the scattering of four fermions in
Quantum Electrodynamics, involving two different types
of leptons, one of which is treated as massless, up to the
second order corrections in the electromagnetic coupling
constant. The calculation were carried out within the
dimensional regularization scheme, and the infrared pole
structure of the renormalized amplitude is found to obey
the universal behaviour predicted by the Soft Collinear
Effective Theory. Our result constitutes the first example
of a complete scattering amplitude for 2 ! 2 processes,
with massless and massive particles in the loops as well
as in the external states, involving planar and non-planar
diagrams at two loops, analytically evaluated.

Our analytic results can be directly applied to the
study, at NNLO accuracy, of massive lepton pair
production in massless lepton annihilation, and the
elastic scattering of massive and massless leptons,
in QED, as well as to determine the Abelian contri-
bution to the scattering of light and heavy quarks in QCD.

Notes – Interested readers can find the expressions of the
UV renormalization constants, the IR renormalization
factor used throughout this Letter and additional
plots for the individual contributions of the coefficients
A,B, . . . , F of Eq. (19) in the Supplemental Material.
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and by the IR renormalization factor ZIR, defined by
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FIG. 1: Three-dimensional plots of the coefficients (finite

part) appearing in the decomposition of the renormalized

one-loop amplitude in Eq. (25a).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.
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Furthermore, in order to implement the inverse decou-

pling transformation for the massive leptons, in such a

way that one works with nl+nh active leptons, one needs
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Amplitudes – The Born term is shown in Eq.(3) of the

Letter, reading as,
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M(0)

We have obtained complete agreement between the predicted IR poles and the 2-Loop UV renormalized amplitude

[Duhr, Dulat (2019)] 
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Further checks
3

✏�4 ✏�3 ✏�2 ✏�1 ✏0 ✏

M(0)
- - - -

181
100 �2

A(1)
- - � 181

100 1.99877525 22.0079572 �11.7311017

B(1)
l - - - - �0.069056030 4.94328573

C(1)
h - - - - �2.24934027 2.54943566

A(2) 181
400 �0.499387626 �35.4922919 19.4997261 48.8842283 -

B(2)
l - � 181

400 0.785712779 �16.1576674 �3.75247701 -

C(2)
h - - 1.12467013 �9.50785825 �25.8771503 -

D(2)
l - - - - �3.96845688 -

E(2)
hl - - - - �4.88512563 -

F (2)
h - - - - �0.158490810 -

TABLE I: Numerical values of the leading order squared amplitude, in Eq. (23), and of the coefficients appearing in

the decomposition of the renormalized one- and two-loop amplitudes in Eqs. (25), evaluated at the phase space point

s/M2 = 5, t/M2 = �5/4, µ = M .

FIG. 2: Three-dimensional plots of the coefficients (finite

part) appearing in the decomposition of the renormalized

two-loop amplitude in Eq. (25b).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

The results of the renormalized one- and the two-loop

interference terms can be found in the Eqs.(15a,15b) of

the Letter, as Laurent series in ✏, hereby reported for

conveninece,

M
(1) =

M
(1)
�2

✏2
+
M

(1)
�1

✏
+M

(1)
0 +M

(1)
1 ✏+O(✏2) , (24a)

M
(2) =

M
(2)
�4

✏4
+ . . .+

M
(2)
�1

✏
+M

(2)
0 +O(✏) . (24b)

Each term can be conveniently decomposed in gauge-

invariant components, see Eqs.(16a,16b), as follows,

M
(1) = A(1) + nl B

(1)
l + nh C

(1)
h , (25a)

M
(2) = A(2) + nl B

(2)
l + nh C

(2)
h + n2

lD
(2)
l

+nh nl E
(2)
hl + n2

h F
(2)
h . (25b)

In Figs 1 and 2, we plot the finite parts of the individual

form factors appearing in the decomposition of the one-

and two-loop amplitudes, given in Eqs. (25). Finally,

in Table I, we showcase the numerical values of the

coefficients A,B,C,D,E, F , at a particular phase-space

point, in the massive-fermion pair production region.
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[Fael (2018)]

[Czakon(2008)] 

[Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)] 

[Bärnreuther, Czakon, Fiedler (2014)] 
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Results: One Loop
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FIG. 1: Three-dimensional plots of the coefficients (finite

part) appearing in the decomposition of the renormalized

one-loop amplitude in Eq. (25a).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.
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Furthermore, in order to implement the inverse decou-

pling transformation for the massive leptons, in such a

way that one works with nl+nh active leptons, one needs

to include an additional term proportional to nh in ZIR
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Letter, reading as,

M
(0)
b =

1

s2
⇥
2(1� ✏)s2 + 4

�
t�M2

�2
+ 4st

⇤
. (23)

2

and by the IR renormalization factor ZIR, defined by

exponentiation of the following expression,

lnZIR =
↵

4⇡

✓
�0
0

4✏2
+

�0

2✏

◆

+
⇣ ↵

4⇡

⌘2
 
�
3�0�0

0

16✏3
+

�0
1 � 4�0�0

16✏2
+

�1

4✏

!

+O
�
↵3
�
, (10)

where �i,�0
i and �i are the coefficient of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,

respectively. We hereby present the coefficients appearing

in the above formulas, up to the needed order in ↵:

�i(↵) = �i
0

⇣ ↵

4⇡

⌘
+ �i

1

⇣ ↵

4⇡

⌘2
+O

�
↵3
�
. (11)

The cusp anomalous dimensions for massless leptons have

the coefficients [5],

�cusp
0 = 4 , �cusp

1 = �
80

9
nl , (12)

whereas, for massive leptons,

�cusp,M
0 (s) =� �cusp

0

1 + x̄2

1� x̄2
ln (�x̄) ,

(13)

�cusp,M
1 (s) =� �cusp

1

1 + x̄2

1� x̄2
ln (�x̄) ,

with x̄ defined through the relation,

s = M2 (1 + x̄)2

x̄
. (14)

The coefficients of the factors related to the massless and

massive leptons are [5],

� 0 =� 3 ,

� 1 =�
3

2
+ 2⇡2

� 24⇣3 + nl

✓
130

27
+

2

3
⇡2

◆
,

�h
0 =� 2 ,

�h
1 =

40

9
nl . (15)

The QED beta function has the expansion

� (↵) = �2↵
⇣
�0 + �1

↵

4⇡
+O

�
↵3
�⌘

, (16)

in which the only needed coefficient for the present calcu-

lation is �0,

�0 = �
4

3
nl . (17)

The quantity �0
appearing in Eq. (10) is defined as,

�0 (↵) ⌘
@

@ lnµ
� (↵) =

1X

n=0

�0
i

⇣ ↵

4⇡

⌘n+1
, (18)

FIG. 1: Three-dimensional plots of the coefficients (finite

part) appearing in the decomposition of the renormalized

one-loop amplitude in Eq. (25a).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

with the relevant coefficients,

�0
0 =� 2�cusp

0 ,

�0
1 =� 2�cusp

1 . (19)

Lastly, the expansion of the renormalization factor ZIR
in Eq. (10) is decomposed as,

ZIR = 1 + ZIR
1

⇣ ↵

4⇡

⌘
+ ZIR

2

⇣ ↵

4⇡

⌘2
+O

�
↵3
�
. (20)

with,

ZIR
1 =

�0
0

4✏2
+

�0

2✏
,

(21)

ZIR
2 =

(�0
0)

2

32✏4
+

�0
0

8✏3

✓
�0 �

3

2
�0

◆
+

�0

8✏2
(�0 � 2�0)

+
�0
1

16✏2
+

�1

4✏
.

Furthermore, in order to implement the inverse decou-

pling transformation for the massive leptons, in such a

way that one works with nl+nh active leptons, one needs

to include an additional term proportional to nh in ZIR
2 :

ZIR
2 ! ZIR

2 + �ZIR
2 , (22)

where,

�ZIR
2 ⌘�

2

3
nh


�0
0

2✏2
Lµ +

�0
0

4✏

✓
L2
µ +

⇡2

6

◆
+

�0

✏
Lµ

#
.

Amplitudes – The Born term is shown in Eq.(3) of the

Letter, reading as,

M
(0)
b =

1

s2
⇥
2(1� ✏)s2 + 4

�
t�M2

�2
+ 4st

⇤
. (23)

2

and by the IR renormalization factor ZIR, defined by

exponentiation of the following expression,

lnZIR =
↵

4⇡

✓
�0
0

4✏2
+

�0

2✏

◆

+
⇣ ↵

4⇡

⌘2
 
�
3�0�0

0

16✏3
+

�0
1 � 4�0�0

16✏2
+

�1

4✏

!

+O
�
↵3
�
, (10)

where �i,�0
i and �i are the coefficient of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,

respectively. We hereby present the coefficients appearing

in the above formulas, up to the needed order in ↵:

�i(↵) = �i
0

⇣ ↵

4⇡

⌘
+ �i

1

⇣ ↵

4⇡

⌘2
+O

�
↵3
�
. (11)

The cusp anomalous dimensions for massless leptons have

the coefficients [5],

�cusp
0 = 4 , �cusp

1 = �
80

9
nl , (12)

whereas, for massive leptons,

�cusp,M
0 (s) =� �cusp

0

1 + x̄2

1� x̄2
ln (�x̄) ,

(13)

�cusp,M
1 (s) =� �cusp

1

1 + x̄2

1� x̄2
ln (�x̄) ,

with x̄ defined through the relation,

s = M2 (1 + x̄)2

x̄
. (14)

The coefficients of the factors related to the massless and

massive leptons are [5],

� 0 =� 3 ,

� 1 =�
3

2
+ 2⇡2

� 24⇣3 + nl

✓
130

27
+

2

3
⇡2

◆
,

�h
0 =� 2 ,

�h
1 =

40

9
nl . (15)

The QED beta function has the expansion

� (↵) = �2↵
⇣
�0 + �1

↵

4⇡
+O

�
↵3
�⌘

, (16)

in which the only needed coefficient for the present calcu-

lation is �0,

�0 = �
4

3
nl . (17)

The quantity �0
appearing in Eq. (10) is defined as,

�0 (↵) ⌘
@

@ lnµ
� (↵) =

1X

n=0

�0
i

⇣ ↵

4⇡

⌘n+1
, (18)

FIG. 1: Three-dimensional plots of the coefficients (finite

part) appearing in the decomposition of the renormalized

one-loop amplitude in Eq. (25a).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

with the relevant coefficients,

�0
0 =� 2�cusp

0 ,

�0
1 =� 2�cusp

1 . (19)

Lastly, the expansion of the renormalization factor ZIR
in Eq. (10) is decomposed as,

ZIR = 1 + ZIR
1

⇣ ↵

4⇡

⌘
+ ZIR

2

⇣ ↵

4⇡

⌘2
+O

�
↵3
�
. (20)

with,

ZIR
1 =

�0
0

4✏2
+

�0

2✏
,

(21)

ZIR
2 =

(�0
0)

2

32✏4
+

�0
0

8✏3

✓
�0 �

3

2
�0

◆
+

�0

8✏2
(�0 � 2�0)

+
�0
1

16✏2
+

�1

4✏
.

Furthermore, in order to implement the inverse decou-

pling transformation for the massive leptons, in such a

way that one works with nl+nh active leptons, one needs

to include an additional term proportional to nh in ZIR
2 :

ZIR
2 ! ZIR

2 + �ZIR
2 , (22)

where,

�ZIR
2 ⌘�

2

3
nh


�0
0

2✏2
Lµ +

�0
0

4✏

✓
L2
µ +

⇡2

6

◆
+

�0

✏
Lµ

#
.

Amplitudes – The Born term is shown in Eq.(3) of the

Letter, reading as,

M
(0)
b =

1

s2
⇥
2(1� ✏)s2 + 4

�
t�M2

�2
+ 4st

⇤
. (23)

5
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IR poles of M(2) directly in the production region; the
analytical expression of M

(2) is computed in the non-
physical region, s < 0, t < 0, and its analytic continuation
is performed numerically. The renormalized one- and two-
loop interference terms are conveniently decomposed in
gauge-invariant components, labeled by the number of
massless (nl) and massive (nh) closed fermion loops
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In Fig. 3, we plot the finite part of one- and two-loop
renormalized amplitudes M

(i)
0 , i = 1, 2 in the physical

region. The threshold singularity is clearly visible and
well reproduced up to very small c.m.e., showing full
control of the numerical stability. The complete formula
for the analytic expression of the renormalized two-loop
amplitude is rather large (⇠ 60MB) and cannot be
reported here. The figures are obtained by evaluating
this formula with high precision on 10,500 evenly spaced
grid points, by employing HandyG [80] and Ginac [81]
(via the package PolyLogtools [82]) for the numerical
evaluation of GPLs. Each evaluation required from
seconds CPU time in the almost flat region to up about
1,500 s CPU time for the configurations approaching the
threshold singularity. These grids are available from the
authors upon request.

Other tests – The master integrals for the Abelian
diagrams in QED can be employed to construct the
analytic expressions of some gauge-invariant contributions
to the two-loop amplitude of the process qq̄ ! tt̄ in
QCD [54–57]: in particular, our results (evaluated in the
region of heavy-lepton pair production, and properly
accounting for the color factors) agree with the numerical
coefficients Eq

l , E
q
h, F

q
l , F

q
lh, F

q
h provided in the Table 1

of Ref. [54, 55, 57], which receive contributions from
Abelian diagrams only; the agreement on the poles of
the above mentioned color coefficients, at other phase-
space points, has been verified using the formula for the

IR poles of two-loop amplitudes in QCD, given in Ref. [83].

Conclusion – We presented the first fully analytic evalua-
tion of the amplitude for the scattering of four fermions in
Quantum Electrodynamics, involving two different types
of leptons, one of which is treated as massless, up to the
second order corrections in the electromagnetic coupling
constant. The calculation were carried out within the
dimensional regularization scheme, and the infrared pole
structure of the renormalized amplitude is found to obey
the universal behaviour predicted by the Soft Collinear
Effective Theory. Our result constitutes the first example
of a complete scattering amplitude for 2 ! 2 processes,
with massless and massive particles in the loops as well
as in the external states, involving planar and non-planar
diagrams at two loops, analytically evaluated.

Our analytic results can be directly applied to the
study, at NNLO accuracy, of massive lepton pair
production in massless lepton annihilation, and the
elastic scattering of massive and massless leptons,
in QED, as well as to determine the Abelian contri-
bution to the scattering of light and heavy quarks in QCD.

Notes – Interested readers can find the expressions of the
UV renormalization constants, the IR renormalization
factor used throughout this Letter and additional
plots for the individual contributions of the coefficients
A,B, . . . , F of Eq. (19) in the Supplemental Material.
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FIG. 2: Diagrams for mass renormalization. The ⇥
symbol represents the insertion of a mass counter-term.

following, these are simply indicated as Zj , with j =
{↵, f, F,M}, respectively. The renormalization constants
admit a perturbative expansions in ↵,

Zj = 1 +
⇣↵
⇡

⌘
�Z(1)

j +
⇣↵
⇡

⌘2
�Z(2)

j +O(↵3) , (12)

and their expressions can be obtained (either directly
or after abelianization) from [57, 76–78]. After substi-
tuting in Eq. (11) the expansions of the bare amplitude,
given in Eq. (2), and the ones of the renormalization con-
stants, given in Eq. (12), the UV renormalized two-loop
amplitude reads

A (↵) = 4⇡↵


A

(0) +
⇣↵
⇡

⌘
A

(1) +
⇣↵
⇡

⌘2
A

(2)

�
, (13)

up to second order corrections in ↵. The n-loop coeffi-
cients A

(n) are given in terms of the ones appearing in
the bare amplitude as

A
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The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
b

(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].

The structure of the IR poles is governed by an anoma-
lous dimension � that has the following structure,

� =�cusp (↵) ln

✓
�

s

µ2

◆
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✓
t�M2

u�M2

◆

+ �cusp,M (↵, s) + 2�h (↵) + 2� (↵) , (15)

where the �i (i 2 {cusp; cusp,M;h; }) coefficients up to
O(↵2) are extracted in analogy to the QCD case [46, 53,
79]. We compute the analytic expression of the two-loop
amplitude M

(2) for the process f�f+
! F�F+ both in

the non-physical region s < 0, t < 0 as well as directly
in the production region. In this physical region, the
imaginary part of the anomalous dimension in Eq. (15) is
computed by adding an infinitesimal positive imaginary
part to s. One can then introduce the IR renormalization
factor ZIR,

lnZIR =
↵

4⇡
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2✏
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3�0�0
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�0
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+O
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↵3
�
, (16)

where �i,�0
i and �i are the coefficients of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,
respectively. The IR poles of the nth-order term M

(n) can
be calculated using ZIR and the lower order contributions,
M

(0), . . . ,M(n�1). In particular, the IR pole structures
at one and two loops are found to be,

M
(1)
���
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=
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2
ZIR
1 M

(0)
���
poles

, (17a)

M
(2)
���
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=
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ZIR
2 �

�
ZIR
1

�2⌘
M
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+2ZIR
1 M

(1)
i���

poles
. (17b)

All functions M
(n) in the r.h.s. of Eqs. (17) must be

evaluated in d = 4 � 2✏ space-time dimensions. The
factors ZIR

i are the coefficients of the series expansion of
ZIR in powers of ↵/(4⇡).

The IR poles structure in Eqs. (17), reconstructed
starting from the tree-level and one-loop amplitudes, is
in perfect agreement with the one obtained starting from
Eq. (14c) and directly calculating the two-loop diagrams.
This provides a non trivial test of the complete two-loop
calculation.

Results – The analytic results of the interference contri-
butions M

(1) and M
(2) are given as Laurent series in ✏

M
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(1)
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0 +M
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�4
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+ . . .+

M
(2)
�1

✏
+M

(2)
0 +O(✏) . (18b)

The analytical expression of M(1) is computed both in
the non-physical region, and in the pair production region,
s > 4M2, t < 0. The latter is required to predict the
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TABLE I: Numerical values of the leading order squared amplitude, in Eq. (23), and of the coefficients appearing in

the decomposition of the renormalized one- and two-loop amplitudes in Eqs. (25), evaluated at the phase space point

s/M2 = 5, t/M2 = �5/4, µ = M .

FIG. 2: Three-dimensional plots of the coefficients (finite

part) appearing in the decomposition of the renormalized

two-loop amplitude in Eq. (25b).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

The results of the renormalized one- and the two-loop

interference terms can be found in the Eqs.(15a,15b) of

the Letter, as Laurent series in ✏, hereby reported for

conveninece,
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Each term can be conveniently decomposed in gauge-

invariant components, see Eqs.(16a,16b), as follows,

M
(1) = A(1) + nl B

(1)
l + nh C

(1)
h , (25a)

M
(2) = A(2) + nl B

(2)
l + nh C

(2)
h + n2

lD
(2)
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+nh nl E
(2)
hl + n2

h F
(2)
h . (25b)

In Figs 1 and 2, we plot the finite parts of the individual

form factors appearing in the decomposition of the one-

and two-loop amplitudes, given in Eqs. (25). Finally,

in Table I, we showcase the numerical values of the

coefficients A,B,C,D,E, F , at a particular phase-space

point, in the massive-fermion pair production region.
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part) appearing in the decomposition of the renormalized

two-loop amplitude in Eq. (25b).

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

The results of the renormalized one- and the two-loop

interference terms can be found in the Eqs.(15a,15b) of

the Letter, as Laurent series in ✏, hereby reported for

conveninece,

M
(1) =

M
(1)
�2

✏2
+
M

(1)
�1

✏
+M

(1)
0 +M

(1)
1 ✏+O(✏2) , (24a)

M
(2) =

M
(2)
�4

✏4
+ . . .+

M
(2)
�1

✏
+M

(2)
0 +O(✏) . (24b)

Each term can be conveniently decomposed in gauge-

invariant components, see Eqs.(16a,16b), as follows,

M
(1) = A(1) + nl B

(1)
l + nh C

(1)
h , (25a)

M
(2) = A(2) + nl B

(2)
l + nh C

(2)
h + n2

lD
(2)
l

+nh nl E
(2)
hl + n2

h F
(2)
h . (25b)

In Figs 1 and 2, we plot the finite parts of the individual

form factors appearing in the decomposition of the one-

and two-loop amplitudes, given in Eqs. (25). Finally,

in Table I, we showcase the numerical values of the

coefficients A,B,C,D,E, F , at a particular phase-space

point, in the massive-fermion pair production region.

∗
roberto.bonciani@roma1.infn.it

†
alessandro.broggio@unimib.it

‡
aferroglia@citytech.cuny.edu

§
manojkumar.mandal@pd.infn.it

¶
pierpaolo.mastrolia@pd.infn.it

�
mattiazzi@pd.infn.it

∗∗
aprimo@physik.uzh.ch

††
joron@uv.es

‡‡
ulrichsc@buffalo.edu

§§
torres@mpp.mpg.de

¶¶
francesco.tramontano@unina.it

[1] D. J. Broadhurst, N. Gray, and K. Schilcher, Z. Phys. C

52, 111 (1991).

[2] K. Melnikov and T. van Ritbergen, Nucl. Phys. B 591, 515

(2000), hep-ph/0005131.

[3] M. Czakon, A. Mitov, and S. Moch, Phys. Lett. B 651,

147 (2007), 0705.1975.

[4] P. Bärnreuther, M. Czakon, and P. Fiedler, JHEP 02, 078

(2014), 1312.6279.

[5] R. J. Hill, Phys. Rev. D 95, 013001 (2017), 1605.02613.

5

FIG. 3: Three-dimensional plots of the finite terms M
(i)
0 ,

i = 1, 2 of the renormalized one- and two-loop
amplitudes, in Eqs. (18a), (18b), where nl = 1, nh = 1.

Here, ⌘ = s/(4M2)� 1, � = �(t�M2)/s.

IR poles of M(2) directly in the production region; the
analytical expression of M

(2) is computed in the non-
physical region, s < 0, t < 0, and its analytic continuation
is performed numerically. The renormalized one- and two-
loop interference terms are conveniently decomposed in
gauge-invariant components, labeled by the number of
massless (nl) and massive (nh) closed fermion loops
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In Fig. 3, we plot the finite part of one- and two-loop
renormalized amplitudes M

(i)
0 , i = 1, 2 in the physical

region. The threshold singularity is clearly visible and
well reproduced up to very small c.m.e., showing full
control of the numerical stability. The complete formula
for the analytic expression of the renormalized two-loop
amplitude is rather large (⇠ 60MB) and cannot be
reported here. The figures are obtained by evaluating
this formula with high precision on 10,500 evenly spaced
grid points, by employing HandyG [80] and Ginac [81]
(via the package PolyLogtools [82]) for the numerical
evaluation of GPLs. Each evaluation required from
seconds CPU time in the almost flat region to up about
1,500 s CPU time for the configurations approaching the
threshold singularity. These grids are available from the
authors upon request.

Other tests – The master integrals for the Abelian
diagrams in QED can be employed to construct the
analytic expressions of some gauge-invariant contributions
to the two-loop amplitude of the process qq̄ ! tt̄ in
QCD [54–57]: in particular, our results (evaluated in the
region of heavy-lepton pair production, and properly
accounting for the color factors) agree with the numerical
coefficients Eq

l , E
q
h, F

q
l , F

q
lh, F

q
h provided in the Table 1

of Ref. [54, 55, 57], which receive contributions from
Abelian diagrams only; the agreement on the poles of
the above mentioned color coefficients, at other phase-
space points, has been verified using the formula for the

IR poles of two-loop amplitudes in QCD, given in Ref. [83].

Conclusion – We presented the first fully analytic evalua-
tion of the amplitude for the scattering of four fermions in
Quantum Electrodynamics, involving two different types
of leptons, one of which is treated as massless, up to the
second order corrections in the electromagnetic coupling
constant. The calculation were carried out within the
dimensional regularization scheme, and the infrared pole
structure of the renormalized amplitude is found to obey
the universal behaviour predicted by the Soft Collinear
Effective Theory. Our result constitutes the first example
of a complete scattering amplitude for 2 ! 2 processes,
with massless and massive particles in the loops as well
as in the external states, involving planar and non-planar
diagrams at two loops, analytically evaluated.

Our analytic results can be directly applied to the
study, at NNLO accuracy, of massive lepton pair
production in massless lepton annihilation, and the
elastic scattering of massive and massless leptons,
in QED, as well as to determine the Abelian contri-
bution to the scattering of light and heavy quarks in QCD.

Notes – Interested readers can find the expressions of the
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⇥ ⇥ 2⇥ +
2⇥ ⇥

FIG. 2: Diagrams for mass renormalization. The ⇥
symbol represents the insertion of a mass counter-term.

following, these are simply indicated as Zj , with j =
{↵, f, F,M}, respectively. The renormalization constants
admit a perturbative expansions in ↵,

Zj = 1 +
⇣↵
⇡

⌘
�Z(1)

j +
⇣↵
⇡

⌘2
�Z(2)

j +O(↵3) , (12)

and their expressions can be obtained (either directly
or after abelianization) from [57, 76–78]. After substi-
tuting in Eq. (11) the expansions of the bare amplitude,
given in Eq. (2), and the ones of the renormalization con-
stants, given in Eq. (12), the UV renormalized two-loop
amplitude reads

A (↵) = 4⇡↵


A

(0) +
⇣↵
⇡

⌘
A

(1) +
⇣↵
⇡

⌘2
A

(2)

�
, (13)

up to second order corrections in ↵. The n-loop coeffi-
cients A

(n) are given in terms of the ones appearing in
the bare amplitude as

A
(0) = A

(0)
b , (14a)

A
(1) = A

(1)
b +

⇣
�Z(1)

↵ + �Z(1)
F

⌘
A

(0)
b , (14b)

A
(2) = A

(2)
b +

⇣
2�Z(1)

↵ + �Z(1)
F

⌘
A

(1)
b

+
⇣
�Z(2)

↵ + �Z(2)
F + �Z(2)

f + �Z(1)
F �Z(1)

↵

⌘
A

(0)
b

+ �Z(1)
M A

(1,mass CT)
b . (14c)

The last term in Eq. (14c) contains the extra contribution
of one-loop diagrams having an insertion of the mass
counter-term in the massive propagators in all possible
ways, as depicted in Fig. 2.
The bare coupling ↵b and the bare amplitudes A

(n)
b

(n = 0, 1, 2), appearing in Eqs. (3) and (4), can be
replaced by the corresponding renormalized quantities
↵ and A

(n), to build the Born term, M
(0), and the

renormalized interference terms, at one loop, M(1), and
at two loops, M(2). The latter two quantities constitute
the main results of this Letter.

Infrared Structure – The IR poles appearing in the two-
loop corrections after UV renormalization can indepen-
dently be obtained starting from the tree-level and the
one-loop amplitudes, by following the same procedure em-
ployed to study the infrared structure of QCD amplitudes
[46, 53].

The structure of the IR poles is governed by an anoma-
lous dimension � that has the following structure,

� =�cusp (↵) ln

✓
�

s

µ2

◆
+ 2�cusp (↵) ln

✓
t�M2

u�M2

◆

+ �cusp,M (↵, s) + 2�h (↵) + 2� (↵) , (15)

where the �i (i 2 {cusp; cusp,M;h; }) coefficients up to
O(↵2) are extracted in analogy to the QCD case [46, 53,
79]. We compute the analytic expression of the two-loop
amplitude M

(2) for the process f�f+
! F�F+ both in

the non-physical region s < 0, t < 0 as well as directly
in the production region. In this physical region, the
imaginary part of the anomalous dimension in Eq. (15) is
computed by adding an infinitesimal positive imaginary
part to s. One can then introduce the IR renormalization
factor ZIR,

lnZIR =
↵

4⇡

✓
�0
0

4✏2
+

�0

2✏

◆

+
⇣ ↵
4⇡

⌘2
 
�
3�0�0

0

16✏3
+

�0
1 � 4�0�0

16✏2
+

�1

4✏

!

+O
�
↵3
�
, (16)

where �i,�0
i and �i are the coefficients of the expansion of

�, its derivative w.r.t. lnµ, and the QED beta function,
respectively. The IR poles of the nth-order term M

(n) can
be calculated using ZIR and the lower order contributions,
M

(0), . . . ,M(n�1). In particular, the IR pole structures
at one and two loops are found to be,

M
(1)
���
poles

=
1

2
ZIR
1 M

(0)
���
poles

, (17a)

M
(2)
���
poles

=
1

8

h⇣
ZIR
2 �

�
ZIR
1

�2⌘
M

(0)

+2ZIR
1 M

(1)
i���

poles
. (17b)

All functions M
(n) in the r.h.s. of Eqs. (17) must be

evaluated in d = 4 � 2✏ space-time dimensions. The
factors ZIR

i are the coefficients of the series expansion of
ZIR in powers of ↵/(4⇡).

The IR poles structure in Eqs. (17), reconstructed
starting from the tree-level and one-loop amplitudes, is
in perfect agreement with the one obtained starting from
Eq. (14c) and directly calculating the two-loop diagrams.
This provides a non trivial test of the complete two-loop
calculation.

Results – The analytic results of the interference contri-
butions M

(1) and M
(2) are given as Laurent series in ✏

M
(1) =

M
(1)
�2

✏2
+
M

(1)
�1

✏
+M

(1)
0 +M

(1)
1 ✏+O(✏2) , (18a)

M
(2) =

M
(2)
�4

✏4
+ . . .+

M
(2)
�1

✏
+M

(2)
0 +O(✏) . (18b)

The analytical expression of M(1) is computed both in
the non-physical region, and in the pair production region,
s > 4M2, t < 0. The latter is required to predict the
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Conclusion and Outlook
First complete analytic 2-Loop amplitude for four fermion scattering in QED with a pair of massive leptons

Complete agreement with the universal IR poles predicted by SCET 

The computation of the 2-Loop amplitude is done within the framework of AIDA [Automated]

One crucial input for the theory initiative at MUonE

Inclusion of the effects of the mass of the Muon

All the ingredients are available for the full analytic evaluation of the 2-Loop amplitude of  

Possible synergy with the MC efforts to include this matrix element 

Engel, Gnendiger, Signer, Ulrich (2019)

Heller (2021)

Becher, Melnikov (2007)Mitov, Moch (2006)

Pavia and PSI Group

Roundtable discussion: To discuss / understand how the grids of the    amplitude should be prepared to felicitate 
the inclusion to MC generators  
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We have created a grid of 10500 points for the 2-Loop amplitude 


