Perspectives from theory on $e^+e^- ightarrow 2\pi$ and $e^+e^- ightarrow 3\pi$

Martin Hoferichter

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

UNIVERSITÄT BERN

FOR FUNDAMENTAL PHYSICS

AEC

Nov 25, 2021

STRONG2020 Virtual Workshop on Spacelike and Timelike determination of the

Hadronic Leading Order contribution to the Muon g-2

- The HVP contribution to g 2 at few times 10⁻¹⁰ amounts to precision measurements of ρ, ω, φ
 - \hookrightarrow vector meson dominance clearly not good enough
- What can we still say from theory?

 $\Delta \epsilon_{o}$

ω, φ parameters close to (reaction-independent) pole parameters and residues

$$\begin{split} \Delta M_{\omega}|_{\rm PDG} &= 0.13\,{\rm MeV} \quad {\rm vs.} \quad \frac{\Gamma_{\omega}^2}{M_{\omega}} \simeq 0.1\,{\rm MeV} \qquad \left[{\rm compare:} \; \frac{\Gamma_{\rho}^2}{M_{\rho}} \simeq 30\,{\rm MeV!} \right] \\ \Delta M_{\phi}|_{\rm PDG} &= 0.016\,{\rm MeV} \quad {\rm vs.} \quad \frac{\Gamma_{\phi}^2}{M_{\phi}} \simeq 0.02\,{\rm MeV} \\ \omega|_{\rm fit\,from\,\,\pi\pi\,\,data} \gtrsim 3 \times 10^{-5} \quad {\rm vs.} \quad \epsilon_{\rho\omega} \frac{\Gamma_{\omega}}{M_{\omega}} \simeq 2 \times 10^{-5} \end{split}$$

 Resonance shape from unitarity/analyticity via main decay channels Colangelo, MH, Stoffer 2018, MH, Hoid, Kubis 2019, 2020 Need to specify conventions regarding VP (bar: include VP)

$$\begin{split} \Delta M_{\omega} &= \bar{M}_{\omega} - M_{\omega} = 0.13 \, \text{MeV} & \Delta \Gamma_{\omega} &= \bar{\Gamma}_{\omega} - \Gamma_{\omega} = -0.06 \, \text{MeV} \\ \Delta M_{\phi} &= \bar{M}_{\phi} - M_{\phi} = 0.26 \, \text{MeV} & \Delta \Gamma_{\phi} &= \bar{\Gamma}_{\phi} - \Gamma_{\phi} \simeq 0 \end{split}$$

 \hookrightarrow crucial at level of precision above

• PDG averages:

- Most entries include VP, but not all!
- Most entries based on VMD fits (with different assumptions for energy dependence)
- In the following: point out issues with PDG averages, and how this reflects tensions in $e^+e^- \rightarrow 2\pi, 3\pi, \bar{K}K$ data
- Will employ relations/corrections above, i.e., use both M_{ω} , \bar{M}_{ω} etc.

Start with the ω

• PDG:
$$\bar{M}_{\omega}|_{\text{average}} = 782.66(13) \text{ MeV} [S = 2.0]$$

 $\bar{\Gamma}_{\omega}|_{\text{average}} = 8.68(13) \text{ MeV}$
 $\bar{M}_{\omega}|_{3\pi,\text{CMD2}} = 782.68(9)(4) \text{ MeV}$
 $\bar{M}_{\omega}|_{3\pi,\text{SND}} = 782.79(8)(9) \text{ MeV}$
 $\bar{M}_{\omega}|_{\pi^{0}\gamma,\text{CMD2}} = 783.20(13)(16) \text{ MeV}$
 $\bar{M}_{\omega}|_{\pi^{0}\gamma,\text{CMD2}} = 783.20(13)(16) \text{ MeV}$
 $\bar{M}_{\omega}|_{\bar{n}_{0}\rightarrow\omega;\pi^{0}\pi^{0}} = 781.96(13)(17) \text{ MeV}$

\hookrightarrow accidental cancellation for the mass makes the result reasonable

- Our fits: $\bar{M}_{\omega}|_{3\pi} = 782.759(28) \text{ MeV}$ $\bar{\Gamma}_{\omega}|_{3\pi} = 8.65(6) \text{ MeV}$ $\bar{M}_{\omega}|_{\pi^{0}\gamma} = 782.712(28) \text{ MeV}$ $\bar{\Gamma}_{\omega}|_{\pi^{0}\gamma} = 8.59(6) \text{ MeV}$ $\bar{M}_{\omega}|_{\text{combination}} = 782.736(24) \text{ MeV}$ $\bar{\Gamma}_{\omega}|_{\text{combination}} = 8.63(5) \text{ MeV}$
- Reasonable agreement with PDG averages, but precision increases if
 - Hadronic p
 p reaction is tossed
 - $\pi^0 \gamma$ included avoiding unphysical phase (then good consistency with 3π)
 - Energy resolution/calibration not added as additional uncertainty

Next: the ϕ

• PDG:
$$\bar{M}_{\phi}|_{\text{average}} = 1019.461(16) \text{ MeV}$$

 $\bar{M}_{\phi}|_{K^+K^-, K_S^0 K_L^0, \text{CMD3}} = 1019.463(61) \text{ MeV}$
 $\bar{M}_{\phi}|_{K^0_S K_L^0, \text{BaBar}} = 1019.462(42)(56) \text{ MeV}$
 $\bar{M}_{\phi}|_{K^0_S K_L^0, \text{BaBar}} = 1019.462(42)(56) \text{ MeV}$
 $\bar{M}_{\phi}|_{K^+K^-, \text{BaBar}} = 1019.51(2)(5) \text{ MeV}$
 $\bar{M}_{\phi}|_{K^0_S K_L^0, \text{CMD2}} = 1019.483(11)(25) \text{ MeV}$
 $\bar{\Gamma}_{\phi}|_{K^0_S K_L^0, \text{CMD2}} = 4.29(4)(7) \text{ MeV}$

\hookrightarrow totally dominated by $\bar{K}K$ (other channels included, but less precise)

• Our fits: $\bar{M}_{\phi}|_{3\pi} = 1019.456(21) \text{ MeV}$ $\bar{\Gamma}_{\phi}|_{3\pi} = 4.23(4) \text{ MeV}$ $\bar{M}_{\phi}|_{\pi^{0}\gamma} = 1019.465(55) \text{ MeV}$ $\bar{\Gamma}_{\phi}|_{\pi^{0}\gamma} = 4.07(13) \text{ MeV}$ $\bar{M}_{\phi}|_{\text{combination}} = 1019.457(20) \text{ MeV}$ $\bar{\Gamma}_{\phi}|_{\text{combination}} = 4.22(5) \text{ MeV}$

\hookrightarrow dominated by 3π

• In general, good agreement between 3π and $\bar{K}K$ at similar level of precision

Why does this matter?

- So far: 3π around ω dominated by SND data
- Out fits (preliminary!) to recent new 3π data sets
 - BESIII 1912.11208

 $ar{M}_{\omega}|_{\mathsf{BESIII}} = 783.30(6)\,\mathsf{MeV}$ $ar{M}_{\phi}|_{\mathsf{BESIII}} = 1019.73(7)\,\mathsf{MeV}$

 \hookrightarrow both ω (+0.56 MeV) and ϕ (+0.27 MeV) masses much larger than before

• BaBar 2110.00520

 $ar{M}_{\omega}|_{\mathsf{BaBar}} = 782.66(1)\,\mathsf{MeV}$ $ar{M}_{\phi}|_{\mathsf{BaBar}} = 1019.54(1)\,\mathsf{MeV}$

 $\hookrightarrow ar{M}_{\omega}$ slightly smaller (-0.08 MeV) and $ar{M}_{\phi}$ slightly larger (+0.08 MeV) than before

- For the φ, the nice agreement between 3π and KK seems jeopardized (but note K⁺K⁻ channel from BaBar)
- Concerns when resonance positions do not match (exactly):
 - To what extent can we combine data sets?
 - To what extent is VP removal compromised?

- Discussion not restricted to 3π and $\bar{K}K$
 - \hookrightarrow affects 2π channel via $ho-\omega$ mixing
- 3π channel parameterized by $\rho-\omega$ mixing parameter $\epsilon_{\rho\omega}$

$$F_{\pi}^{V}(s) = \left(1 + rac{s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}}\epsilon_{
ho\omega}
ight)\Omega(s)G_{
m in}(s)$$

- From analytic continuation to ω pole: $\frac{\delta_{\epsilon}}{M_{\omega}} \simeq \arctan \frac{\Gamma_{\omega}}{M_{\omega}} = 0.6^{\circ}$
 - \hookrightarrow up to tiny corrections $\epsilon_{
 ho\omega}$ has to be real
- However BaBar 2012:
 - M_{ω} in 2π fits tends to come out (significantly) below M_{ω} from 3π
 - M_{ω} strongly correlated with δ_{ϵ}
 - \hookrightarrow points to 2π channel not being understood at required level

On the isospin-violating phase of ρ - ω mixing

• Can produce a more sizable phase in $\epsilon_{\rho\omega}$ via isospin-breaking corrections

$$\omega \to X \to \rho$$
 $X = \pi^0 \gamma, \pi \pi \gamma, \eta \gamma$

Implemented via

$$\epsilon_{
ho\omega}
ightarrow \operatorname{\mathsf{Re}} \epsilon_{
ho\omega} + i \operatorname{\mathsf{Im}} \epsilon_{
ho\omega} rac{\left(1 - rac{M_{\pi 0}^2}{s}
ight)^3}{\left(1 - rac{M_{\pi 0}^2}{M_{\omega}^2}
ight)^3} heta(s - M_{\pi 0}^2)$$

to ensure correct thresholds

Narrow-width estimate

$$|\operatorname{Im} \epsilon_{\rho\omega}^{X}| = \frac{\sqrt{\Gamma(\omega \to X)\Gamma(\rho \to X)}}{3M_{V}}$$

leads to 2.7° ($\pi^0\gamma$), 0.7° ($\pi\pi\gamma$), and 0.2° ($\eta\gamma$)

 $\hookrightarrow \delta_\epsilon \gtrsim$ 4 $^\circ$ hard to understand

On the isospin-violating phase of ρ - ω mixing

	$\chi^2/{ m dof}$	$M_\omega~{ m [MeV]}$	$10^3 imes { m Re} \epsilon_{ ho \omega}$	δ _ε [°]	10 ¹⁰ $ imes$ a $_{\mu}^{\pi\pi}$ \leq 1 GeV
SND06 + CMD2	1.28	781.75(22)(1)	1.97(4)(2)		498.5(3.4)(2.6)
	1.05	782.39(23)(2)	1.92(4)(3)	9.9(1.8)(0.4)	497.3(3.1)(3.9)
BaBar	1.14	781.86(14)(1)	2.04(3)(2)		501.9(3.3)(2.0)
	1.14	781.93(18)(4)	2.03(4)(1)	1.3(1.9)(0.7)	501.9(3.3)(1.8)
KLOE''	1.20	781.81(16)(3)	1.98(4)(1)		491.8(2.1)(1.8)
	1.13	782.42(23)(5)	1.95(4)(2)	6.1(1.7)(0.6)	490.8(2.1)(1.7)
BESIII	1.12	782.17(33)(7)	2.01(19)(9)		490.8(4.8)(3.9)
	1.02	783.05(48)(2)	1.98(19)(7)	17.7(7.0)(1.2)	490.3(4.6)(3.0)
SND20	2.93	781.79(30)(6)	2.04(6)(3)		494.2(6.7)(9.0)
	1.87	782.37(28)(6)	2.01(5)(2)	10.2(2.4)(1.4)	494.9(5.3)(3.1)
Combination w/o SND20	1.25	781.72(8)(3)	2.02(2)(3)		494.5(1.5)(2.3)
	1.20	782.12(12)(4)	1.96(2)(2)	4.6(9)(8)	494.2(1.4)(2.1)

- Most fits improve moderately by allowing for a phase δ_{ϵ}
 - $\hookrightarrow \textbf{huge effect for SND20}$
- Preferred value of δ_{ϵ} varies a lot among the different data sets
- δ_{ϵ} correlated with M_{ω} BaBar 2012, $\Delta M_{\omega} \simeq \frac{\Gamma_{\omega}}{2} \delta_{\epsilon}$, but required value of $\delta_{\epsilon} \simeq 10^{\circ}$ for agreement with $e^+e^- \rightarrow 3\pi$, $\pi^0\gamma$ too large to be explained by $X = \pi^0\gamma$, $\pi\pi\gamma$, $\eta\gamma$

- To claim subpercent precision in the HVP contribution, we ought to have a consistent understanding of the simplest hadronic channels
- This does not seem to be the case:
 - Tensions in ω (and ϕ ?) parameters in isospin-conserving case (3π , $\bar{K}K$)
 - Tensions in ω parameters in isospin-violating case (2 π), both among data sets and with isospin-conserving case
 - \hookrightarrow these parameters should not be **reaction dependent**!
- This is relevant also for direct-integration techniques: removal of VP depends critically on ω , ϕ parameters

 \hookrightarrow do we need to pay more attention to energy resolution/calibration when combining data sets?