Dispersive approach to isospin-breaking corrections to $e^+e^- \to \pi^+\pi^-$ and $\pi^+\pi^- \to \pi^+\pi^-$

Gilberto Colangelo

STRONG 2020 - Nov 24-26, 2021

Outline

Introduction

Dispersive approach to radiative corrections to $\pi\pi$ scattering

Dispersive approach to FSR in $e^+e^- o \pi^+\pi^-$

Conclusions and outlook

Work done in collaboration with Joachim Monnard and Jacobo Ruiz de Elvira

Outline

Introduction

Dispersive approach to radiative corrections to $\pi\pi$ scattering

Dispersive approach to FSR in $e^+e^- \rightarrow \pi^+\pi^-$

Conclusions and outlook

HVP contribution to $(g-2)_{\mu}$

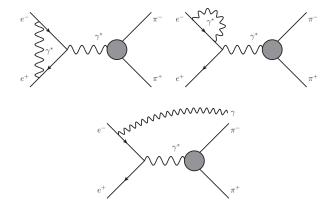
Contribution	Value ×10 ¹¹
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu}:=a_{\mu}^{exp}-a_{\mu}^{SM}$	251(59)

HVP dominant source of theory uncertainty rel. size $\sim 0.6\% \Rightarrow$ RC in $e^+e^- \rightarrow \pi^+\pi^-$ must be under control

RC evaluation based on models so far

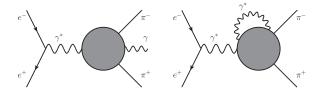
A dispersive approach could lead to model-independent results

Initial State Radiation:



can be calculated in QED in terms of $F_{\pi}^{V}(s)$

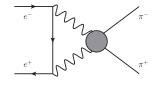
Final State Radiation:



requires hadronic matrix elements beyond $F_{\pi}^{V}(s)$ known in ChPT to one loop

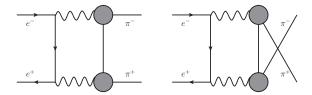
Kubis, Meißner (01)

Interference terms:



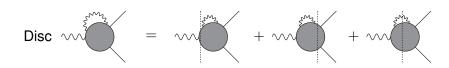
also require hadronic matrix elements beyond $F_{\pi}^{V}(s)$

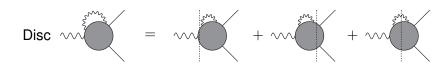
Interference terms:



also require hadronic matrix elements beyond $F_{\pi}^{V}(s)$ other than in the 1π -exchange approximation;

do not contribute to the total cross section and will be ignored but have been evaluated and found to be small by J. Monnard





Neglecting intermediate states beyond 2π , unitarity reads

$$\frac{\mathsf{Disc} F_{\pi}^{V,\alpha}(s)}{2i} = \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V}(s) \times T_{\pi\pi}^{\alpha*}(s,t)
+ \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V,\alpha}(s) \times T_{\pi\pi}^{*}(s,t)
+ \frac{(2\pi)^4}{2} \int d\Phi_3 F_{\pi}^{V,\gamma}(s,t) T_{\pi\pi}^{\gamma*}(s,\{t_i\})$$

$$\mathsf{Disc} \; \mathsf{O} = \; \mathsf{O} \; \mathsf{Disc} \; \mathsf{Disc}$$

Neglecting intermediate states beyond 2π , unitarity reads

$$\begin{array}{lcl} \frac{\mathsf{Disc} F_{\pi}^{V,\alpha}(s)}{2i} & = & \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V}(s) \times T_{\pi\pi}^{\alpha*}(s,t) \\ & + & \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V,\alpha}(s) \times T_{\pi\pi}^{*}(s,t) \\ & + & \frac{(2\pi)^4}{2} \int d\Phi_3 F_{\pi}^{V,\gamma}(s,t) T_{\pi\pi}^{\gamma*}(s,\{t_i\}) \end{array}$$

 \Rightarrow need $T^{\alpha}_{\pi\pi}$ as well as $T^{\gamma}_{\pi\pi}$ and $F^{V,\gamma}_{\pi}$ as input

$$\mathsf{Disc} \; \mathsf{vol} \; = \; \mathsf{vol} \; + \; \mathsf{vol}$$

Neglecting intermediate states beyond 2π , unitarity reads

$$\begin{array}{lcl} \frac{\mathsf{Disc} F_{\pi}^{V,\alpha}(s)}{2i} & = & \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V}(s) \times T_{\pi\pi}^{\alpha*}(s,t) \\ & + & \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V,\alpha}(s) \times T_{\pi\pi}^{*}(s,t) \\ & + & \frac{(2\pi)^4}{2} \int d\Phi_3 F_{\pi}^{V,\gamma}(s,t) T_{\pi\pi}^{\gamma*}(s,\{t_i\}) \end{array}$$

 \Rightarrow need $T^{\alpha}_{\pi\pi}$ as well as $T^{\gamma}_{\pi\pi}$ and $F^{V,\gamma}_{\pi}$ as input

The DR for $F_{\pi}^{V,\alpha}(s)$ takes the form of an integral equation

Outline

Introduction

Dispersive approach to radiative corrections to $\pi\pi$ scattering

Dispersive approach to FSR in $e^+e^- \rightarrow \pi^+\pi^-$

Conclusions and outlook

$\pi\pi$ scattering amplitude in the isospin limit

Phenomenological representation of A(s, t, u) below $\sim 1 \text{ GeV}$

$$A(s,t,u) = A(s,t,u)_{SP} + A(s,t,u)_d$$

where A_{SP} is the unitarity contribution of S and P waves

$$A(s,t,u)_{SP} = \frac{32\pi}{3} \left\{ W^{0}(s) - W^{2}(s) + \frac{9}{2}(s-u)W^{1}(t) + \frac{3}{2}W^{2}(t) + (t \leftrightarrow u) \right\}$$

(with $\sqrt{s_2} \sim 2 \text{ GeV}$)

and

$$W^0(s) = \frac{a_0^0 s}{4 M_\pi^2} + \frac{s(s - 4 M_\pi^2)}{\pi} \int_{4 M_\pi^2}^{s_2} ds' \frac{\operatorname{Im} t_0^0(s')}{s'(s' - 4 M_\pi^2)(s' - s)}$$

$$W^{1}(s) = \frac{s}{\pi} \int_{4M_{\pi}^{2}}^{s_{2}} ds' \frac{\operatorname{Im} t_{1}^{1}(s')}{s'(s'-4M_{\pi}^{2})(s'-s)}$$

$$W^2(s) = \frac{a_0^2 s}{4 M_\pi^2} + \frac{s(s - 4 M_\pi^2)}{\pi} \int_{4 M_\pi^2}^{s_2} ds' \; \frac{\operatorname{Im} t_0^2(s')}{s'(s' - 4 M_\pi^2)(s' - s)}$$

$\pi\pi$ scattering amplitude in the isospin limit

Phenomenological representation of A(s, t, u) below $\sim 1 \text{ GeV}$

$$A(s,t,u) = A(s,t,u)_{SP} + A(s,t,u)_d$$

where A_{SP} is the unitarity contribution of S and P waves

$$A(s,t,u)_{SP} = \frac{32\pi}{3} \left\{ W^{0}(s) - W^{2}(s) + \frac{9}{2}(s-u)W^{1}(t) + \frac{3}{2}W^{2}(t) + (t \leftrightarrow u) \right\}$$

where $t_\ell'(s)$ are partial wave projections of isospin amplitudes

$$T^{0}(s, t, u) = 3A(s, t, u) + A(t, u, s) + A(u, s, t)$$

 $T^{1}(s, t, u) = A(t, u, s) - A(u, s, t)$
 $T^{2}(s, t, u) = A(t, u, s) + A(u, s, t)$

$\pi\pi$ scattering amplitude in the isospin limit

Phenomenological representation of A(s, t, u) below $\sim 1 \text{ GeV}$

$$A(s,t,u) = A(s,t,u)_{SP} + A(s,t,u)_d$$

where A_{SP} is the unitarity contribution of S and P waves

$$A(s,t,u)_{SP} = \frac{32\pi}{3} \left\{ W^{0}(s) - W^{2}(s) + \frac{9}{2}(s-u)W^{1}(t) + \frac{3}{2}W^{2}(t) + (t \leftrightarrow u) \right\}$$

and A_d is the "background amplitude", due to higher waves and higher energies. Below \sim 1 GeV it is a small and smooth contribution \Rightarrow polynomial

$\pi\pi$ scattering amplitude away from the isospin limit

We need to consider three different effects: GC, Gasser, Rusetsky (09)

- 1. strong isospin breaking: effects proportional to $(m_u m_d)$
- 2. effects proportional to $M_{\pi^+} M_{\pi^0}$
- effects due to photon exchanges

Each of them can be considered separately from the other two

$\pi\pi$ scattering amplitude away from the isospin limit

We need to consider three different effects: GC, Gasser, Rusetsky (09)

- 1. strong isospin breaking: effects proportional to $(m_u m_d)$
- 2. effects proportional to $M_{\pi^+} M_{\pi^0}$
- 3. effects due to photon exchanges

Each of them can be considered separately from the other two

At low energy effects 1. are small $\sim O((m_u - m_d)^2)$

At higher energies they generate π^0 - η as well as ρ - ω mixing

These can be (and are) described phenomenologically (and π^0 - η mixing is not relevant for $F_{\pi}^{V}(s)$)

$\pi\pi$ scattering amplitude away from the isospin limit

We need to consider three different effects:

GC, Gasser, Rusetsky (09)

- 1. strong isospin breaking: effects proportional to $(m_u m_d)$
- 2. effects proportional to $M_{\pi^+} M_{\pi^0}$
- 3. effects due to photon exchanges

Each of them can be considered separately from the other two

At low energy effects 1. are small $\sim O((m_u - m_d)^2)$

At higher energies they generate π^0 - η as well as ρ - ω mixing

These can be (and are) described phenomenologically (and π^0 - η mixing is not relevant for $F_{\pi}^{V}(s)$)

The rest of the talk concerns the other two

First we need to switch from the isospin to the charge basis

$$T^{c}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{1}{2}T^{1}(s,t,u) + \frac{1}{6}T^{2}(s,t,u)$$

$$T^{x}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) - \frac{1}{3}T^{2}(s,t,u)$$

$$T^{n}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{2}{3}T^{2}(s,t,u)$$

where

$$T^c := T(\pi^+\pi^- \to \pi^+\pi^-), \ T^x := T(\pi^+\pi^- \to \pi^0\pi^0), \ T^n := T(\pi^0\pi^0 \to \pi^0\pi^0)$$

First we need to switch from the isospin to the charge basis

$$T^{c}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{1}{2}T^{1}(s,t,u) + \frac{1}{6}T^{2}(s,t,u)$$

$$T^{x}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) - \frac{1}{3}T^{2}(s,t,u)$$

$$T^{n}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{2}{3}T^{2}(s,t,u)$$

where

$$T^c := T(\pi^+\pi^- \to \pi^+\pi^-), \ T^x := T(\pi^+\pi^- \to \pi^0\pi^0), \ T^n := T(\pi^0\pi^0 \to \pi^0\pi^0)$$

and with crossed channels

$$T^{++}(s,t,u) := T(\pi^+\pi^+ \to \pi^+\pi^+) = T^c(t,u,s)$$

 $T^+(s,t,u) := T(\pi^+\pi^0 \to \pi^+\pi^0) = T^x(t,u,s)$.

First we need to switch from the isospin to the charge basis

$$T^{c}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{1}{2}T^{1}(s,t,u) + \frac{1}{6}T^{2}(s,t,u)$$

$$T^{x}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) - \frac{1}{3}T^{2}(s,t,u)$$

$$T^{n}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{2}{3}T^{2}(s,t,u)$$

Then adapt unitarity relations

$$\operatorname{Im} T_{S}(s) = T_{S}(s)\rho(s)T_{S}^{*}(s), \text{ with } T_{S} = \begin{pmatrix} t_{n,S}(s) & -t_{x,S}(s) \\ -t_{x,S}(s) & t_{c,S}(s) \end{pmatrix},$$

$$\rho(s) = \begin{pmatrix} \sigma_{0}(s)\theta(s - 4M_{\pi^{0}}^{2}) & 0 \\ 0 & 2\sigma(s)\theta(s - 4M_{\pi}^{2}) \end{pmatrix}$$

where

$$\sigma_0(s) = \sqrt{1 - 4M_{\pi^0}^2/s}, \quad \sigma(s) = \sqrt{1 - 4M_{\pi}^2/s}$$

First we need to switch from the isospin to the charge basis

$$T^{c}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{1}{2}T^{1}(s,t,u) + \frac{1}{6}T^{2}(s,t,u)$$

$$T^{x}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) - \frac{1}{3}T^{2}(s,t,u)$$

$$T^{n}(s,t,u) = \frac{1}{3}T^{0}(s,t,u) + \frac{2}{3}T^{2}(s,t,u)$$

Then adapt unitarity relations

$$\begin{aligned} & \operatorname{Im} t_{n,S}(s) &= & \sigma_0(s) |t_{n,S}(s)|^2 + 2\sigma(s) |t_{x,S}(s)|^2 \\ & \operatorname{Im} t_{x,S}(s) &= & \sigma_0(s) t_{n,S}(s) t_{x,S}^*(s) + 2\sigma(s) t_{x,S}(s) t_{c,S}^*(s) \\ & \operatorname{Im} t_{c,S}(s) &= & \sigma_0(s) |t_{x,S}(s)|^2 + 2\sigma(s) |t_{c,S}(s)|^2 \ . \end{aligned}$$

where

$$\sigma_0(s) = \sqrt{1 - 4M_{\pi^0}^2/s}, \quad \sigma(s) = \sqrt{1 - 4M_{\pi}^2/s}$$

This leads to the following Roy eqs.

$$T^n_{SP}(s,t,u) = 32\pi \left(W^{00}_{n,S}(s) + W^{+-}_{n,S}(s) + (s \leftrightarrow t) + (s \leftrightarrow u)\right)$$

$$W_{n,S}^{00}(s) = \frac{a_n^{00} s}{4M_{\pi^0}^2} + \frac{s(s - 4M_{\pi^0}^2)}{\pi} \int_{4M_{\pi^0}^2}^{s_2} ds' \frac{\text{Im} t_{n,S}^{00}(s')}{s'(s' - 4M_{\pi^0}^2)(s' - s)}$$

$$W_{n,S}^{+-}(s) = \frac{s(s - 4M_{\pi^0}^2)}{\pi} \int_{4M_{\pi}^2}^{s_2} ds' \frac{\text{Im} t_{n,S}^{+-}(s')}{s'(s' - 4M_{\pi^0}^2)(s' - s)},$$

This leads to the following Roy eqs.

$$\begin{split} T^{++}_{SP}(s,t,u) &= & 32\pi \left[W^{++}_S(s) + W^{00}_{c,S}(t) + W^{+-}_{c,S}(t) + W^{00}_{c,S}(u) + W^{+-}_{c,S}(u) \right. \\ & & + (s-u)W^{+-}_{c,P}(t) + (s-t)W^{+-}_{c,P}(u) \right] \\ W^{++}_S(s) &= & \frac{a^{++}}{4M_\pi^2} + \frac{s(s-4M_\pi^2)}{\pi} \int_{4M_\pi^2}^{s_2} ds' \frac{\mathrm{Im} t_S^{++}(s')}{s'(s'-4M_\pi^2)(s'-s)} \\ W^{+-}_{c,S}(s) &= & \frac{a_c^{+-}}{4M_\pi^2} + \frac{s(s-4M_\pi^2)}{\pi} \int_{4M_\pi^2}^{s_2} ds' \frac{\mathrm{Im} t_{c,S}^{+-}(s')}{s'(s'-4M_\pi^2)(s'-s)} \\ W^{00}_{c,S}(s) &= & \frac{s(s-4M_\pi^2)}{\pi} \int_{4M_\pi^2}^{s_2} ds' \frac{\mathrm{Im} t_{c,S}^{00}(s')}{s'(s'-4M_\pi^2)(s'-s)} \\ W^{+-}_{c,P}(s) &= & \frac{s}{\pi} \int_{4M_\pi^2}^{s_2} ds' \frac{3\mathrm{Im} t_{c,P}^{+-}(s')}{s'(s'-4M_\pi^2)(s'-s)} \, . \end{split}$$

Via crossing this provides also a representation for T^c

This leads to the following Roy eqs.

$$\begin{split} T_{SP}^{\chi}(s,t,u) &= 32\pi \left[W_{\chi,S}^{+-}(s) + W_{\chi,S}^{00}(s) + W_{S}^{+0}(t) + W_{S}^{+0}(u) \right. \\ &+ \left(t(s-u) + \Delta_{\pi}^{2} \right) \ W_{P}^{+0}(t) + \left(u(s-t) + \Delta_{\pi}^{2} \right) W_{P}^{+0}(u) \right] \\ W_{\chi,S}^{+-}(s) &= \frac{a_{\chi}^{+-} s}{4M_{\pi}^{2}} + \frac{s(s-4M_{\pi}^{2})}{\pi} \int_{4M_{\pi}^{2}}^{s_{2}} ds' \frac{\operatorname{Im} t_{\chi,S}^{+-}(s')}{s'(s'-4M_{\pi}^{2})(s'-s)} \\ W_{\chi,S}^{00}(s) &= \frac{s(s-4M_{\pi}^{2})}{\pi} \int_{4M_{\pi}^{2}}^{s_{2}} ds' \frac{\operatorname{Im} t_{\chi,S}^{00}(s')}{s'(s'-4M_{\pi}^{2})(s'-s)} \\ W_{S}^{+0}(s) &= \frac{a_{C}^{+0} s}{4\bar{M}_{\pi}^{2}} + \frac{s(s-4\bar{M}_{\pi}^{2})}{\pi} \int_{4\bar{M}_{\pi}^{2}}^{s_{2}} ds' \frac{\operatorname{Im} t_{S}^{+0}(s')}{s'(s'-4\bar{M}_{\pi}^{2})(s'-s)} \\ W_{P}^{+0}(s) &= \frac{1}{\pi} \int_{4\bar{M}_{\pi}^{2}}^{s_{2}} ds' \frac{3\operatorname{Im} t_{P}^{+0}(s')}{\lambda(s',M_{\pi}^{2},M_{\pi^{0}}^{2})(s'-s)} , \\ \Delta_{\pi} &:= M_{\pi}^{2} - M_{\pi^{0}}^{2} \ \bar{M}_{\pi} := (M_{\pi} + M_{\pi^{0}})/2 \end{split}$$

Roy eqs. and $M_{\pi}^2 - M_{\pi^0}^2$ effects

- ▶ Roy eqs. rely on input above $\sqrt{s_1} \sim 1.15$ GeV and for the scattering lengths
- the numerical solution of the equations provides the partial waves for $4M_{\pi}^2 \le s \le s_1$
- we assume that the input above s_1 does not change for $\Delta_\pi \neq 0$
- taking as starting point the solutions in the isospin limit and simply reevaluating the dispersive integrals after having shifted the thresholds will provide the desired effects
- the procedure can be iterated
- ▶ the effect on $F_{\pi}^{V}(s)$ is small (the $\pi^{0}\pi^{0}$ only appears in the t-channel of the $\pi\pi$ amplitude in the unitarity relation)

Roy eqs. and photon-exchange effects

Photon-exchange diagrams are $O(\alpha)$ effects not included in the Roy eqs.

$$T_B(t, \mathbf{s}, \mathbf{u}) := \prod_{\pi^+}^{\pi^-} = 4\pi\alpha \frac{\mathbf{s} - \mathbf{u}}{t} F_{\pi}^{V}(t)^2$$

$$T_B^c(s,t,u) = T_B(t,s,u) + T_B(s,t,u)$$

Roy eqs. and photon-exchange effects

Photon-exchange diagrams are $O(\alpha)$ effects not included in the Roy eqs.

$$T_B(t,s,u) := \int_{\pi^+}^{\pi^-} \int_{\pi^+}^{\pi^-} = 4\pi\alpha \frac{s-u}{t} F_\pi^V(t)^2$$

$$T_B^c(s,t,u) = T_B(t,s,u) + T_B(s,t,u)$$

- Adding such a contribution to the T^c amplitude upsets the unitarity relations for all amplitudes
- we are interested in corrections only up to $O(\alpha)$ \Rightarrow set up an iterative scheme

Roy eqs. and photon-exchange effects: 1. iteration

$$T_D^c(s,t,u) := \frac{1}{2} + \text{flipped diags.}$$

$$T_D^X(s,t,u) :=$$

"Triangle diagrams" \Rightarrow topology of box diagrams and expressed through a double-spectral representation

Roy eqs. and photon-exchange effects: 1. iteration

$$T^c_{\mathcal{D}}(s,t,u) := \{ \{ \} \} + \{ \} \} + \{ \} \}$$

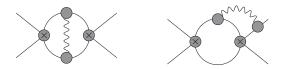
$$T_D^X(s,t,u) :=$$

"Triangle diagrams" \Rightarrow topology of box diagrams and expressed through a double-spectral representation

Starting point for further iterations:

$$T_{1}^{c}(s,t,u) = T_{0}^{c}(s,t,u) + T_{B}^{c}(s,t,u) + T_{D}^{c}(s,t,u) T_{1}^{x}(s,t,u) = T_{0}^{x}(s,t,u) + T_{D}^{x}(s,t,u) T_{1}^{n}(s,t,u) = T_{0}^{n}(s,t,u)$$

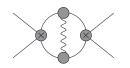
Roy eqs. and photon-exchange effects: 2. iteration

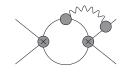


Diagrams have to be cut in all possible ways:

⇒ contributions from subamplitudes with real photons

Roy eqs. and photon-exchange effects: 2. iteration





Diagrams have to be cut in all possible ways:

⇒ contributions from subamplitudes with real photons

Expression after further iterations:

$$T_{1}^{c}(s,t,u) = T_{0}^{c}(s,t,u) + T_{B}^{c}(s,t,u) + T_{D}^{c}(s,t,u) + \sum_{k=2} R_{k}^{c}(s,t,u)$$

$$T_{1}^{x}(s,t,u) = T_{0}^{x}(s,t,u) + \sum_{k=2} R_{k}^{x}(s,t,u) + \sum_{k=2} R_{k}^{x}(s,t,u)$$

$$T_{1}^{n}(s,t,u) = T_{0}^{n}(s,t,u) + \sum_{k=2} R_{k}^{n}(s,t,u)$$

Roy eqs. and photon-exchange effects: comments

- ▶ starting from the 2. iteration the evaluation of the R_{k+1}^i is done as follows:
 - 1. project the R_k^i amplitudes onto partial waves
 - 2. insert these into the unitarity relations combined with the projections of T_0^i
 - 3. add the contribution of subdiagrams with real photons
 - 4. solve the corresponding dispersion relation
- subtraction constants can be fixed by matching to ChPT
- ▶ iteration number k corresponds to chiral $O(p^{2k})$
- ► ChPT $\pi\pi$ amplitude with RC known to one loop Knecht, Nehme (02)
 - \Rightarrow subtraction constants for all R_k^i , $k \ge 2$ can be set to zero

Outline

Introduction

Dispersive approach to radiative corrections to $\pi\pi$ scattering

Dispersive approach to FSR in $e^+e^- \to \pi^+\pi^-$

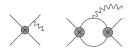
Conclusions and outlook

Dispersive treatment of FSR in $e^+e^- \rightarrow \pi^+\pi^-$

$$\begin{array}{lcl} \frac{\mathsf{Disc} F_{\pi}^{V,\alpha}(s)}{2i} & = & \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V}(s) \times T_{\pi\pi}^{\alpha*}(s,t) \\ & + & \frac{(2\pi)^4}{2} \int d\Phi_2 F_{\pi}^{V,\alpha}(s) \times T_{\pi\pi}^{*}(s,t) \\ & + & \frac{(2\pi)^4}{2} \int d\Phi_3 F_{\pi}^{V,\gamma}(s,t) T_{\pi\pi}^{\gamma*}(s,\{t_i\}) \end{array}$$

After this long digression we have obtained $T_{\pi\pi}^{\alpha}$

For $F_{\pi}^{V,\gamma}$ and $T_{\pi\pi}^{\gamma}$ the approximation no heavier intermediate states than two pions means:



All subamplitudes known $\Rightarrow F_{\pi}^{V,\gamma}$ and $T_{\pi\pi}^{\gamma}$

Evaluation of $F_{\pi}^{V,\alpha}$

Having evaluated all the following diagrams

J. Monnard, PhD thesis 2021

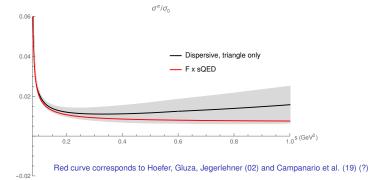
Evaluation of $F_{\pi}^{V,\alpha}$

Having evaluated all the following diagrams

J. Monnard, PhD thesis 2021

the results for $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$ look as follows:

Preliminary!



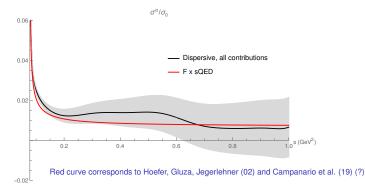
Evaluation of $F_{\pi}^{V,\alpha}$

Having evaluated all the following diagrams

J. Monnard, PhD thesis 2021

the results for $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$ look as follows:

Preliminary!



Impact on a_{μ}^{HVP}

Ideally one would use the calculated RC directly in the data analysis (future?). To get an idea of the impact we did the following:

thanks to M. Hoferichter and P. Stoffer

- 1. remove RC from the measured $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$
- 2. fit with the dispersive representation for $F_{\pi}^{V}(s)$
- insert back the RC

The impact on a_{μ}^{HVP} is evaluated by comparing to the result obtained by removing RC with $\eta(s)$ calculated in sQED

$$10^{11} \Delta \textit{a}_{\mu}^{HVP} = \left\{ \begin{array}{ll} 10.2 \pm 0.5 \pm 5 & \text{FsQED} \\ 10.5 \pm 0.5 & \text{triangle} \\ 13.2 \pm 0.5 & \text{full} \end{array} \right.$$

Outline

Introduction

Dispersive approach to radiative corrections to $\pi\pi$ scattering

Dispersive approach to FSR in $e^+e^- \to \pi^+\pi^-$

Conclusions and outlook

Conclusions and outlook

• We have developed the formalism for evaluating dispersively RC to the $\pi\pi$ scattering amplitude and $F_{\pi}^{V}(s)$

work in progress GC, J. Monnard, J. Ruiz de Elvira

- the possibility to obtain a finite system of equations and solve them relies on the approximation of including only up to 2π intermediate states
- our preliminary evaluation of the corrections to $F_\pi^V(s)$ shows no unexpectedly large effects J. Monnard, PhD thesis, 2021
- our preliminary estimate of the impact on a_{μ}^{HVP} also shows moderate effects

 J. Monnard, PhD thesis, 2021
- the final goal is to provide a ready-to-use code which can be implemented in MC and used in data analysis
- lacktriangle we plan to apply the same approach to $au o\pi\pi
 u_ au$