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HVP contribution to (g − 2)µ

Contribution Value ×1011

QED 116 584 718.931(104)
Electroweak 153.6(1.0)
HVP (e+e−, LO + NLO + NNLO) 6845(40)
HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116 591 810(43)
Experiment 116 592 061(41)
Difference: ∆aµ := aexp

µ − aSM
µ 251(59)

HVP dominant source of theory uncertainty
rel. size ∼ 0.6%⇒ RC in e+e− → π+π− must be under control

RC evaluation based on models so far
A dispersive approach could lead to model-independent results
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Radiative corrections to e+e− → π+π−

Initial State Radiation:
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can be calculated in QED in terms of F V
π (s)
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Radiative corrections to e+e− → π+π−

Final State Radiation:
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γ∗

requires hadronic matrix elements beyond F V
π (s)

known in ChPT to one loop Kubis, Meißner (01)
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Radiative corrections to e+e− → π+π−

Interference terms:

e−

e+

π−

π+

also require hadronic matrix elements beyond F V
π (s)
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Radiative corrections to e+e− → π+π−

Interference terms:

e−

e+

π−

π+

e−

e+

π−

π+

also require hadronic matrix elements beyond F V
π (s)

other than in the 1π-exchange approximation;

do not contribute to the total cross section and will be ignored
but have been evaluated and found to be small by J. Monnard
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Dispersive approach to FSR

Disc = + +
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Dispersive approach to FSR

Disc = + +

Neglecting intermediate states beyond 2π, unitarity reads

DiscF V ,α
π (s)

2i
=

(2π)4

2

∫
dΦ2F V

π (s)× Tα∗
ππ (s, t)

+
(2π)4

2

∫
dΦ2F V ,α

π (s)× T ∗ππ(s, t)

+
(2π)4

2

∫
dΦ3F V ,γ

π (s, t)T γ∗
ππ(s, {ti})
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Dispersive approach to FSR

Disc = + +

Neglecting intermediate states beyond 2π, unitarity reads

DiscF V ,α
π (s)
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=

(2π)4
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dΦ2F V
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2
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+
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π (s, t)T γ∗
ππ(s, {ti})

⇒ need Tα
ππ as well as T γ

ππ and F V ,γ
π as input
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Dispersive approach to FSR

Disc = + +

Neglecting intermediate states beyond 2π, unitarity reads

DiscF V ,α
π (s)

2i
=

(2π)4

2

∫
dΦ2F V

π (s)× Tα∗
ππ (s, t)

+
(2π)4

2

∫
dΦ2F V ,α

π (s)× T ∗ππ(s, t)

+
(2π)4

2

∫
dΦ3F V ,γ

π (s, t)T γ∗
ππ(s, {ti})

⇒ need Tα
ππ as well as T γ

ππ and F V ,γ
π as input

The DR for F V ,α
π (s) takes the form of an integral equation
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ππ scattering amplitude in the isospin limit
Phenomenological representation of A(s, t ,u) below ∼ 1 GeV

A(s, t ,u) = A(s, t ,u)SP + A(s, t ,u)d

where ASP is the unitarity contribution of S and P waves

A(s, t ,u)SP =
32π

3

{
W 0(s)−W 2(s)+

9
2

(s − u)W 1(t)+
3
2

W 2(t)+(t ↔ u)

}
and (with

√
s2 ∼ 2 GeV)

W 0(s) =
a0

0 s
4M2

π

+
s(s − 4M2

π)

π

∫ s2

4M2
π

ds′
Im t0

0 (s′)
s′(s′ − 4M2

π)(s′ − s)

W 1(s) =
s
π

∫ s2

4M2
π

ds′
Im t1

1 (s′)
s′(s′ − 4M2

π)(s′ − s)

W 2(s) =
a2

0 s
4M2

π

+
s(s − 4M2

π)

π

∫ s2

4M2
π

ds′
Im t2

0 (s′)
s′(s′ − 4M2

π)(s′ − s)
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ππ scattering amplitude in the isospin limit
Phenomenological representation of A(s, t ,u) below ∼ 1 GeV

A(s, t ,u) = A(s, t ,u)SP + A(s, t ,u)d

where ASP is the unitarity contribution of S and P waves

A(s, t ,u)SP =
32π

3

{
W 0(s)−W 2(s)+

9
2

(s − u)W 1(t)+
3
2

W 2(t)+(t ↔ u)

}
where t I

`(s) are partial wave projections of isospin amplitudes

T 0(s, t ,u) = 3A(s, t ,u) + A(t ,u, s) + A(u, s, t)

T 1(s, t ,u) = A(t ,u, s)− A(u, s, t)

T 2(s, t ,u) = A(t ,u, s) + A(u, s, t)
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ππ scattering amplitude in the isospin limit
Phenomenological representation of A(s, t ,u) below ∼ 1 GeV

A(s, t ,u) = A(s, t ,u)SP + A(s, t ,u)d

where ASP is the unitarity contribution of S and P waves

A(s, t ,u)SP =
32π

3

{
W 0(s)−W 2(s)+

9
2

(s − u)W 1(t)+
3
2

W 2(t)+(t ↔ u)

}

and Ad is the “background amplitude”, due to higher waves and
higher energies. Below ∼ 1 GeV it is a small and smooth
contribution⇒ polynomial
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ππ scattering amplitude away from the isospin limit
We need to consider three different effects: GC, Gasser, Rusetsky (09)

1. strong isospin breaking: effects proportional to (mu −md )

2. effects proportional to Mπ+ −Mπ0

3. effects due to photon exchanges

Each of them can be considered separately from the other two
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ππ scattering amplitude away from the isospin limit
We need to consider three different effects: GC, Gasser, Rusetsky (09)

1. strong isospin breaking: effects proportional to (mu −md )

2. effects proportional to Mπ+ −Mπ0

3. effects due to photon exchanges

Each of them can be considered separately from the other two

At low energy effects 1. are small ∼ O((mu −md )2)

At higher energies they generate π0-η as well as ρ-ω mixing

These can be (and are) described phenomenologically
(and π0-η mixing is not relevant for F V

π (s))
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ππ scattering amplitude away from the isospin limit
We need to consider three different effects: GC, Gasser, Rusetsky (09)

1. strong isospin breaking: effects proportional to (mu −md )

2. effects proportional to Mπ+ −Mπ0

3. effects due to photon exchanges

Each of them can be considered separately from the other two

At low energy effects 1. are small ∼ O((mu −md )2)

At higher energies they generate π0-η as well as ρ-ω mixing

These can be (and are) described phenomenologically
(and π0-η mixing is not relevant for F V

π (s))

The rest of the talk concerns the other two
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Roy equations away from the isospin limit
First we need to switch from the isospin to the charge basis

T c(s, t ,u) =
1
3

T 0(s, t ,u) +
1
2

T 1(s, t ,u) +
1
6

T 2(s, t ,u)

T x (s, t ,u) =
1
3

T 0(s, t ,u)− 1
3

T 2(s, t ,u)

T n(s, t ,u) =
1
3

T 0(s, t ,u) +
2
3

T 2(s, t ,u)

where

T c := T (π+π−→ π+π−), T x := T (π+π−→ π0π0), T n := T (π0π0→ π0π0)
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Roy equations away from the isospin limit
First we need to switch from the isospin to the charge basis

T c(s, t ,u) =
1
3

T 0(s, t ,u) +
1
2

T 1(s, t ,u) +
1
6

T 2(s, t ,u)

T x (s, t ,u) =
1
3

T 0(s, t ,u)− 1
3

T 2(s, t ,u)

T n(s, t ,u) =
1
3

T 0(s, t ,u) +
2
3

T 2(s, t ,u)

where

T c := T (π+π−→ π+π−), T x := T (π+π−→ π0π0), T n := T (π0π0→ π0π0)

and with crossed channels

T ++(s, t ,u) := T (π+π+ → π+π+) = T c(t ,u, s)

T +(s, t ,u) := T (π+π0 → π+π0) = T x (t ,u, s) .
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Roy equations away from the isospin limit
First we need to switch from the isospin to the charge basis

T c(s, t ,u) =
1
3

T 0(s, t ,u) +
1
2

T 1(s, t ,u) +
1
6

T 2(s, t ,u)

T x (s, t ,u) =
1
3

T 0(s, t ,u)− 1
3

T 2(s, t ,u)

T n(s, t ,u) =
1
3

T 0(s, t ,u) +
2
3

T 2(s, t ,u)

Then adapt unitarity relations

ImTS(s) = TS(s)ρ(s)T ∗S (s) , with TS =

(
tn,S(s) −tx,S(s)
−tx,S(s) tc,S(s)

)
,

ρ(s) =

(
σ0(s)θ(s − 4M2

π0 ) 0
0 2σ(s)θ(s − 4M2

π)

)
where

σ0(s) =
√

1− 4M2
π0/s, σ(s) =

√
1− 4M2

π/s
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Roy equations away from the isospin limit
First we need to switch from the isospin to the charge basis

T c(s, t ,u) =
1
3

T 0(s, t ,u) +
1
2

T 1(s, t ,u) +
1
6

T 2(s, t ,u)

T x (s, t ,u) =
1
3

T 0(s, t ,u)− 1
3

T 2(s, t ,u)

T n(s, t ,u) =
1
3

T 0(s, t ,u) +
2
3

T 2(s, t ,u)

Then adapt unitarity relations

Imtn,S(s) = σ0(s)|tn,S(s)|2 + 2σ(s)|tx,S(s)|2
Imtx,S(s) = σ0(s)tn,S(s)t∗x,S(s) + 2σ(s)tx,S(s)t∗c,S(s)

Imtc,S(s) = σ0(s)|tx,S(s)|2 + 2σ(s)|tc,S(s)|2 .

where
σ0(s) =

√
1− 4M2

π0/s, σ(s) =
√

1− 4M2
π/s
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Roy equations away from the isospin limit

This leads to the following Roy eqs.

T n
SP(s, t ,u) = 32π

(
W 00

n,S(s) + W +−
n,S (s) + (s ↔ t) + (s ↔ u)

)

W 00
n,S(s) =

a00
n s

4M2
π0

+
s(s − 4M2

π0 )

π

∫ s2

4M2
π0

ds′
Imt00

n,S(s′)

s′(s′ − 4M2
π0 )(s′ − s)

W +−
n,S (s) =

s(s − 4M2
π0 )

π

∫ s2

4M2
π

ds′
Imt+−

n,S (s′)

s′(s′ − 4M2
π0 )(s′ − s)

,
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Roy equations away from the isospin limit

This leads to the following Roy eqs.

T ++
SP (s, t ,u) = 32π

[
W ++

S (s) + W 00
c,S(t) + W +−

c,S (t) + W 00
c,S(u) + W +−

c,S (u)

+(s − u)W +−
c,P (t) + (s − t)W +−

c,P (u)
]

W ++
S (s) =

a++ s
4M2

π

+
s(s − 4M2

π)

π

∫ s2

4M2
π

ds′
Imt++

S (s′)
s′(s′ − 4M2

π)(s′ − s)

W +−
c,S (s) =

a+−
c s
4M2

π

+
s(s − 4M2

π)

π

∫ s2

4M2
π

ds′
Imt+−

c,S (s′)
s′(s′ − 4M2

π)(s′ − s)

W 00
c,S(s) =

s(s − 4M2
π)

π

∫ s2

4M2
π0

ds′
Imt00

c,S(s′)
s′(s′ − 4M2

π)(s′ − s)

W +−
c,P (s) =

s
π

∫ s2

4M2
π

ds′
3Imt+−

c,P (s′)
s′(s′ − 4M2

π)(s′ − s)
.

Via crossing this provides also a representation for T c



Introduction RC for ππ → ππ RC for e+e− → π+π− Conclusions

Roy equations away from the isospin limit

This leads to the following Roy eqs.

T x
SP(s, t ,u) = 32π

[
W +−

x,S (s) + W 00
x,S(s) + W +0

S (t) + W +0
S (u)

+
(
t(s − u) + ∆2

π

)
W +0

P (t) +
(
u(s − t) + ∆2

π

)
W +0

P (u)
]

W +−
x,S (s) =

a+−
x s
4M2

π

+
s(s − 4M2

π)

π

∫ s2

4M2
π

ds′
Imt+−

x,S (s′)
s′(s′ − 4M2

π)(s′ − s)

W 00
x,S(s) =

s(s − 4M2
π)

π

∫ s2

4M2
π0

ds′
Imt00

x,S(s′)
s′(s′ − 4M2

π)(s′ − s)

W +0
S (s) =

a+0
c s

4M̄2
π

+
s(s − 4M̄2

π)

π

∫ s2

4M̄2
π

ds′
Imt+0

S (s′)
s′(s′ − 4M̄2

π)(s′ − s)

W +0
P (s) =

1
π

∫ s2

4M̄2
π

ds′
3Imt+0

P (s′)
λ(s′,M2

π,M2
π0 )(s′ − s)

,

∆π := M2
π −M2

π0 M̄π := (Mπ + Mπ0 )/2
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Roy eqs. and M2
π −M2

π0 effects

I Roy eqs. rely on input above
√

s1 ∼ 1.15 GeV and for the
scattering lengths

I the numerical solution of the equations provides the partial
waves for 4M2

π ≤ s ≤ s1

I we assume that the input above s1 does not change for
∆π 6= 0

I taking as starting point the solutions in the isospin limit and
simply reevaluating the dispersive integrals after having
shifted the thresholds will provide the desired effects

I the procedure can be iterated
I the effect on F V

π (s) is small (the π0π0 only appears in the
t-channel of the ππ amplitude in the unitarity relation)
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Roy eqs. and photon-exchange effects
Photon-exchange diagrams are O(α) effects not included in the
Roy eqs.

TB(t , s,u) := π−

π+π+

π−
= 4πα

s − u
t

F V
π (t)2

T c
B (s, t ,u) = TB(t , s,u) + TB(s, t ,u)
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Roy eqs. and photon-exchange effects
Photon-exchange diagrams are O(α) effects not included in the
Roy eqs.

TB(t , s,u) := π−

π+π+

π−
= 4πα

s − u
t

F V
π (t)2

T c
B (s, t ,u) = TB(t , s,u) + TB(s, t ,u)

I Adding such a contribution to the T c amplitude upsets the
unitarity relations for all amplitudes

I we are interested in corrections only up to O(α)
⇒ set up an iterative scheme
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Roy eqs. and photon-exchange effects: 1. iteration

T c
D(s, t ,u) := + + + flipped diags.

T x
D(s, t ,u) :=

“Triangle diagrams”⇒ topology of box diagrams and expressed
through a double-spectral representation
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Roy eqs. and photon-exchange effects: 1. iteration

T c
D(s, t ,u) := + + + flipped diags.

T x
D(s, t ,u) :=

“Triangle diagrams”⇒ topology of box diagrams and expressed
through a double-spectral representation

Starting point for further iterations:

T c
1 (s, t ,u) = T c

0 (s, t ,u) + T c
B(s, t ,u) + T c

D(s, t ,u)

T x
1 (s, t ,u) = T x

0 (s, t ,u) + T x
D(s, t ,u)

T n
1 (s, t ,u) = T n

0 (s, t ,u)
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Roy eqs. and photon-exchange effects: 2. iteration

Diagrams have to be cut in all possible ways:
⇒ contributions from subamplitudes with real photons
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Roy eqs. and photon-exchange effects: 2. iteration

Diagrams have to be cut in all possible ways:
⇒ contributions from subamplitudes with real photons

Expression after further iterations:

T c
1 (s, t ,u) = T c

0 (s, t ,u) + T c
B (s, t ,u) + T c

D(s, t ,u) +
∑
k=2

Rc
k (s, t ,u)

T x
1 (s, t ,u) = T x

0 (s, t ,u) + T x
D(s, t ,u) +

∑
k=2

Rx
k (s, t ,u)

T n
1 (s, t ,u) = T n

0 (s, t ,u) +
∑
k=2

Rn
k (s, t ,u)
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Roy eqs. and photon-exchange effects: comments

I starting from the 2. iteration the evaluation of the R i
k+1 is

done as follows:
1. project the R i

k amplitudes onto partial waves
2. insert these into the unitarity relations combined with the

projections of T i
0

3. add the contribution of subdiagrams with real photons
4. solve the corresponding dispersion relation

I subtraction constants can be fixed by matching to ChPT

I iteration number k corresponds to chiral O(p2k )

I ChPT ππ amplitude with RC known to one loop Knecht, Nehme (02)

⇒ subtraction constants for all R i
k , k ≥ 2 can be set to zero
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Dispersive treatment of FSR in e+e− → π+π−

DiscF V ,α
π (s)

2i
=

(2π)4

2

∫
dΦ2F V

π (s)× Tα∗
ππ (s, t)

+
(2π)4

2

∫
dΦ2F V ,α

π (s)× T ∗ππ(s, t)

+
(2π)4

2

∫
dΦ3F V ,γ

π (s, t)T γ∗
ππ(s, {ti})

After this long digression we have obtained Tα
ππ

For F V ,γ
π and T γ

ππ the approximation no heavier intermediate
states than two pions means:

All subamplitudes known⇒ F V ,γ
π and T γ

ππ X
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Evaluation of F V ,α
π

Having evaluated all the following diagrams J. Monnard, PhD thesis 2021



Introduction RC for ππ → ππ RC for e+e− → π+π− Conclusions

Evaluation of F V ,α
π

Having evaluated all the following diagrams J. Monnard, PhD thesis 2021

the results for σ(e+e− → π+π−(γ)) look as follows: Preliminary!

Dispersive, triangle only

F x sQED

0.2 0.4 0.6 0.8 1.0
s (GeV2 )

-0.02

0.02

0.04

0.06

σ
α /σ0

Red curve corresponds to Hoefer, Gluza, Jegerlehner (02) and Campanario et al. (19) (?)
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Evaluation of F V ,α
π

Having evaluated all the following diagrams J. Monnard, PhD thesis 2021

the results for σ(e+e− → π+π−(γ)) look as follows: Preliminary!

Dispersive, all contributions

F x sQED

0.2 0.4 0.6 0.8 1.0
s (GeV2 )

-0.02

0.02

0.04

0.06

σ
α /σ0

Red curve corresponds to Hoefer, Gluza, Jegerlehner (02) and Campanario et al. (19) (?)
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Impact on aHVP
µ

Ideally one would use the calculated RC directly in the data
analysis (future?). To get an idea of the impact we did the
following: thanks to M. Hoferichter and P. Stoffer

1. remove RC from the measured σ(e+e− → π+π−(γ))

2. fit with the dispersive representation for F V
π (s)

3. insert back the RC

The impact on aHVP
µ is evaluated by comparing to the result

obtained by removing RC with η(s) calculated in sQED

1011∆aHVP
µ =


10.2± 0.5± 5 FsQED
10.5± 0.5 triangle
13.2± 0.5 full
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Conclusions and outlook

I We have developed the formalism for evaluating
dispersively RC to the ππ scattering amplitude and F V

π (s)
work in progress GC, J. Monnard, J. Ruiz de Elvira

I the possibility to obtain a finite system of equations and
solve them relies on the approximation of including only up
to 2π intermediate states

I our preliminary evaluation of the corrections to F V
π (s)

shows no unexpectedly large effects J. Monnard, PhD thesis, 2021

I our preliminary estimate of the impact on aHVP
µ also shows

moderate effects J. Monnard, PhD thesis, 2021

I the final goal is to provide a ready-to-use code which can
be implemented in MC and used in data analysis

I we plan to apply the same approach to τ → ππντ
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