The BabaYaga event generator: overview and future prospects

C.M. Carloni Calame

INFN Pavia, Italy

STRONG 2020

Spacelike and Timelike determination of the Hadronic Leading Order contribution to the Muon g-2

online, November 24 - 26, 2021

in collaboration with G. Montagna, O. Nicrosini and F. Piccinini

- References & motivations
- Theoretical formulation: QED PS and NLO matching
- Results
- Future developments (wish list)
- Conclusions

- BabaYaga core references:
 - C.M.C.C et al. Phys. Lett. B **798** (2019), 134976 $e^+e^- \rightarrow \gamma\gamma$ with EWK RCs for FCC-ee • Barzè et al., Eur. Phys. J. C **71** (2011) 1680 BabaYaga with dark photon • Balossini et al., Phys. Lett. **663** (2008) 209 BabaYaga@NLO for $e^+e^- \rightarrow \gamma\gamma$ • Balossini et al., Nucl. Phys. B**758** (2006) 227 BabaYaga@NLO for Bhabha • C.M.C.C. et al., Nucl. Phys. Proc. Suppl. **131** (2004) 48 BabaYaga@NLO • C.M.C.C. et al., Nucl. Phys. B **520** (2001) 16 improved PS BabaYaga • C.M.C.C. et al., Nucl. Phys. B **584** (2000) 459 BabaYaga

★ Related work:

- S. Actis et al.
 "Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data", Eur. Phys. J. C 66 (2010) 585
 Report of the Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies
- C.M.C.C. et al., JHEP **1107** (2011) 126 NNLO massive pair corrections

- Reference processes for luminosity at flavour factories are required to have a clean topology, high statistics and be calculable with high theoretical accuracy
- * Large-angle QED processes $e^+e^- \rightarrow e^+e^-$ (Bhabha), $e^+e^- \rightarrow \gamma\gamma$, $e^+e^- \rightarrow \mu^+\mu^$ are golden processes at flavour factories to get typical precision at the 0.1% level

 \hookrightarrow QED radiative corrections are mandatory

- ← Fully-fledged exclusive Monte Carlo event generators are needed to account for complex experimental selection criteria
 - BabaYaga was developed for high-precision simulation of QED processes at flavour factories, primarily for luminosity determination
 - The focus is on integrated cross sections, within experimental cuts
- → Based on an *in-house* implementation of a QED Parton Shower, *consistently* matched with exact QED NLO matrix elements
 - \hookrightarrow An arbitrary number of (extra) photons can be generated

- Common methods used to account for multiple photon corrections are analytical collinear QED Structure Functions (SF), YFS exponentiation, QED Parton Shower (PS)
- The QED PS is an exact MC solution of the QED DGLAP equation for the non-singlet electron SF $D(x,Q^2)$

$$Q^2 \frac{\partial}{\partial Q^2} D(x, Q^2) = \frac{\alpha}{2\pi} \int_x^1 \frac{dt}{t} P_+(t) D(\frac{x}{t}, Q^2)$$

- The PS solution can be cast into the form $D(x,Q^2) = \Pi(Q^2,\epsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \int \delta(x-x_1\cdots x_n) \prod_{i=0}^n \left[\frac{\alpha}{2\pi}P(x_i) \ L \ dx_i\right]$ $\rightarrow \Pi(Q^2,\epsilon) \equiv e^{-\frac{\alpha}{2\pi}LI_+} \text{ Sudakov form factor, } I_+ \equiv \int_0^{1-\epsilon} P(x)dx,$ $L \equiv \ln Q^2/m^2 \text{ collinear log, } \epsilon \text{ soft/hard separator and } Q^2 \text{ virtuality scale}$
 - ightarrow the kinematics of the photon emissions can be recovered ightarrow exclusive photons generation

QED Parton Shower

- The PS catches the collinear and soft factorisable dynamics to all orders in α (exponentiation, resummation)
- By its nature, at any order corrections are approximate at Leading-Log (LL) level
- RCs are separated into soft+virtual emissions (virtual γ's or real γ's with E_γ < ε) and hard emissions (E_γ > ε).
 No IR-safe physical observable depends on ε.
- The accuracy is improved by matching leading-log PS with exact NLO matrix elements (NLOPS)

 \rightsquigarrow theoretical error starts then at $\mathcal{O}(\alpha^2)$ (NNLO)

Matching NLO and PS in BabaYaga@NLO

Exact $\mathcal{O}(\alpha)$ (NLO) soft+virtual (SV) corrections and hard-bremsstrahlung (H) matrix elements can be combined with QED PS via a matching procedure

•
$$d\sigma_{PS}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,PS}|^2 d\Phi_n$$

- $d\sigma_{PS}^{\alpha} = [1 + C_{\alpha,PS}] |\mathcal{M}_0|^2 d\Phi_2 + |\mathcal{M}_{1,PS}|^2 d\Phi_3 \equiv d\sigma_{PS}^{SV}(\varepsilon) + d\sigma_{PS}^H(\varepsilon)$
- $d\sigma_{\text{NLO}}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_2 + |\mathcal{M}_1|^2 d\Phi_3 \equiv d\sigma_{\text{NLO}}^{SV}(\varepsilon) + d\sigma_{\text{NLO}}^H(\varepsilon)$
- $F_{SV} = 1 + (C_{\alpha} C_{\alpha, PS})$ $F_H = 1 + \frac{|\mathcal{M}_1|^2 |\mathcal{M}_{1, PS}|^2}{|\mathcal{M}_{1, PS}|^2}$

Master formula

$$d\sigma_{\text{matched}}^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,PS}|^2 \prod_{i=0}^{n} F_{H,i} d\Phi_n$$

 $d\Phi_n$ is the exact phase space for n final-state particles Any approximation is confined into matrix elements

 \rightsquigarrow F_{SV} and F_H are built-up with NLO "ingredients"

C.M. Carloni Calame (INFN, Pavia)

- F_{SV} and $F_{H,i}$ are infrared/collinear safe and account for missing $\mathcal{O}(\alpha)$ non-logs, avoiding double counting of leading-logs
- $\left[\sigma_{matched}^{\infty}\right]_{\mathcal{O}(\alpha)} = \sigma_{\text{NLO}}^{\alpha}$
- resummation of higher orders LL (PS) contributions is preserved
- the cross section is still fully differential in the momenta of the final state particles (*F*'s correction factors are calculated and applied on an event-by-event basis)
- as a by-product, part of photonic $\alpha^2 L$ included by means of terms of the type $F_{SV \mid H,i} \otimes$ [leading-logs]

G. Montagna et al., PLB 385 (1996)

• the theoretical error is shifted to $\mathcal{O}(\alpha^2)$ (NNLO, 2 loop) not infrared, singly collinear terms: very naively and roughly (for photonic corrections)

$$rac{1}{2}lpha^2 L\equiv rac{1}{2}lpha^2 ext{log}\,rac{s}{m_e^2}\simeq 5 imes 10^{-4}$$
 at 1 GeV

Loosely and schematically, the corrections to the LO cross section can be arranged as:

$$\begin{array}{c|c} \mathsf{LO} & \alpha^{0} \\ \mathsf{NLO} & \alpha L & \alpha \\ \mathsf{NNLO} & \frac{1}{2}\alpha^{2}L^{2} & \frac{1}{2}\alpha^{2}L & \frac{1}{2}\alpha^{2} \\ \mathsf{h.o.} & \sum_{n=3}^{\infty} \frac{\alpha^{n}}{n!}L^{n} & \sum_{n=3}^{\infty} \frac{\alpha^{n}}{n!}L^{n-1} & \cdots \end{array}$$

Blue: Leading-Log PS, SF

 $L\simeq 14$ at $1~{\rm GeV}$

Loosely and schematically, the corrections to the LO cross section can be arranged as:

Red: matched PS, SF + NLO

 $L\simeq 14$ at $1~{\rm GeV}$

Loosely and schematically, the corrections to the LO cross section can be arranged as:

Typically at flavour factories (on integrated Bhabha σ)

 $L\simeq 14$ at $1~{\rm GeV}$

from Balossini et al., Nucl. Phys. B758 (2006) 227

 $M_{e^+e^-}$ invariant mass and acollinearity distributions, at KLOE \mapsto

> $OLD \rightarrow pure PS$ NEW \rightarrow matched PS with NLO $\mathcal{O}(\alpha) \rightarrow \text{exact NLO}$

both exact QED NLO and higher orders resummation are essential for high-precision $\sim \rightarrow$ simulations

from S. Actis et al. Eur. Phys. J. C 66 (2010) 585

- It is extremely important to compare independent calculations, implementations, codes, in order to
 - \mapsto asses the technical precision, spot bugs (with the same "theory ingredients")
 - \mapsto estimate theoretical errors when including partial/incomplete higher-order corrections
- E.g. comparison BabaYaga@NLO vs. BHWIDE (Jadach, Płaczek, Ward) at KLOE

Estimating the theoretical accuracy by measuring missing NNLO

from Balossini et al., Nucl. Phys. B758 (2006) 227

Using realistic cuts for luminosity at KLOE

The BabaYaga@NLO master formula can be expanded up to NNLO and consistently compared to exact results

• e.g., vs the class of exact photonic soft+virtual QED NNLO corrections, function of the soft photon cut-off ε and m_e

- * differences are infrared safe and $\delta\sigma(\text{photonic})/\sigma^{\text{LO}} \propto \alpha^2 L$, as expected
- Numerically, for various selection criteria at the Φ and B factories

 $\sigma_{
m SV}^{
m NNLO}({
m photonic}) - \sigma_{
m SV}^{
m NNLO}({
m BabaYaga@NLO}) < 0.02\% imes \sigma^{
m LO}$

C.M. Carloni Calame (INFN, Pavia)

Estimating the theoretical accuracy by measuring missing NNLO

from P. Banerjee et al., Bhabha scattering at NNLO with next-to-soft stabilisation

Phys. Lett. B 820 (2021), 136547

- Recently, NNLO RCs to Bhabha were included in McMule
- A (quick) tuned comparison to BabaYaga@NLO expanded up to $\mathcal{O}(\alpha^2)$ was performed (by including only photonic corrections)

	$\sigma/\mu b$		$\delta K^{(i)}/\%$
	McMule	BABAYAGA	McMule
$\sigma^{(0)}$	6.8557	6.8557	
$\sigma^{(1)}$	-0.7957	-0.7957	-11.606
$\sigma^{(2)}$	0.0312	0.0267	0.515
σ_2	6.0912	6.0868	

Table 1: Comparison of our exact fixed-order calculation for the total cross section with the full LO and NLO as well as the approximate NNLO results from BABAYAGA [50]. All digits given are significant compared to the error of the numerical integration.

 $\rightarrow \sigma_{\text{McMule}}^{\text{NNLO}} - \sigma_{\text{BabaYaga@NLO}}^{\text{NNLO}} = 0.06\% \times \sigma^{\text{LO}}$ including all NNLO (photonic) contributions

Error budget for Bhabha luminometry at flavour factories

main conclusion of the Luminosity section of S. Actis et al., Eur. Phys. J. C 66 (2010) 585

• Putting the sources of uncertainties (in large-angle Bhabha) all together:

Source of error (%)	$\Phi-factories$	$\sqrt{s}=$ 3.5 GeV	B-factories
$ \delta_{\rm VP}^{\rm err} $ [Jegerlehner]	0.00	0.01	0.03
$ \delta_{ m VP}^{ m err} $ [HMNT]	0.02	0.01	0.02
$ \delta_{\mathrm{SV},\alpha^2}^{\mathrm{err}} $	0.02	0.02	0.02
$ \delta_{\mathrm{HH},\alpha^2}^{\mathrm{err}} $	0.00	0.00	0.00
$ \delta_{\rm SV,H,\alpha^2}^{\rm err} $	0.05	0.05	0.05
$ \delta_{ m pairs}^{ m err} $	0.03	0.016	0.03
$ \delta_{ ext{total}}^{ ext{err}} $ linearly	0.12	0.1	0.13
$ \delta_{ m total}^{ m err} $ in quadrature	0.07	0.06	0.06

 The present error estimate appears to be rather robust and sufficient for high-precision luminosity measurements at the 0.1% level.
 It is comparable with that achieved for small-angle Bhabha luminosity monitoring at LEP

• For the experiments on top of and closely around the narrow resonances $(J/\psi, \Upsilon, \ldots)$, the accuracy quickly deteriorates, because of the differences between the predictions of independent $\Delta \alpha_{had}^{(5)}(q^2)$ parameterizations and/or their intrinsic error

- Since a long time in the wish-list: QED PS matching with exact NNLO
 - \sim NNLO calculations are now numerically more reliable, more independent cross-checks are available
 - → Can be boosted by parallel efforts and developments on MUonE side (Mesmer code)
- Include full mass-dependent effects in RCs (needless for Bhabha and $e^+e^- \rightarrow \gamma\gamma$, but perhaps needed for $e^+e^- \rightarrow \mu^+\mu^-$ at low energies, see Fedor's talk)
- Make simulations more reliable in proximity of narrow resonances

- → BabaYaga@NLO matches a QED PS with NLO matrix elements
- $\sim\,$ It was developed to provide high-precision cross section predictions for luminometry measurements at flavour factories
- \sim The natural next-step is to include NNLO matrix elements to improve accuracy
- → Efforts on the MUonE side are expected to produce a positive boost towards inclusion of exact NNLO corrections also in BabaYaga@NLO, i.e. BabaYaga@NLO → BabaYaga@NNLO
- ✓ For easier maintenance, we plan to make the code public on a github/gitlab repository

SPARES

Collinear log

CMCC, Phys. Lett. B 520 (2001), 16

- The collinear log L comes from the integration over angular variables of the photons
- In the spirit of exclusive generation, it can be improved to include interference effects among charged legs (at least in the soft-limit)

$$L = \int d\Omega_k I(k) \qquad I(k) = \sum_{i,j} \eta_i \eta_j \frac{p_i \cdot p_j}{(p_i \cdot k) (p_j \cdot k)} E_{\gamma}^2$$

• Generating photons' angular variables according to I(k) improves exclusive description of the event, e.g. w.r.t. exact NLO

Resummation beyond α^2

 \star with a complete 2-loop generator at hand, (leading-log) resummation beyond α^2 can be neglected?

Impact of α^2 (solid line) and resummation of higher order ($\geq \alpha^3$) (dashed line) corrections on the acollinearity distribution

* Resummation beyond α^2 still important!