

Experimental asymmetry in CMD3 2π data vs prediction

Fedor Ignatov BINP, Novosibirsk

STRONG2020 virtual Workshop 24 November 2021

CMD3 at VEPP-2000 e+e- collider

24 November 2021

G2020 Virtual Workshop

$e+e- \rightarrow \pi+\pi-by CMD3$

Very simple topology (just 2 track back to back), but the most challenging channel due to high precision requirement. Original plans was to reach systematic ~0.35-0.5%

Crucial pieces of analysis:

- × $e/\mu/\pi$ separation
- x radiative corrections
- × precise fiducial volume

events separation either by momentum or by energy deposition

Momentums works better at low energy 2E< 0.8 GeV

24 November 2021

Fiducial volume cross check

All events at ρ -peak : $E_{\text{beam}} = 350 - 410 \text{ MeV}$ $1 < \Theta < \pi$ -1 rad - good detector acceptance $\times 10^3$ 800 $N_{total} = 6.46 \times 10^7$ 700 600F sim mixed 500 data 400 : 47.4% N_{total} e+e-300 2π: 48.3% 200 100 :4% cosmic 0.0 0.8 2.2 $\theta_{average}, rad$

Sim mixed:

Generators spectra + all efficiencies/smearing extracted from data and full simulation $N_{\pi\pi/ee/\mu\mu,etc}$ - from event separation

Asymmetry

24 November 2021

Asymmetry $2\pi/e+e-/2\mu$

Asymmetry relative to generator prediction

24 November 2021

Scalar production

Could it be: $e+e- \rightarrow \rho \rightarrow \sigma\gamma$ or $a_1^{\pm}\pi^{\pm}$?

With help of FASTERD generator

O. Shekhovtsova, G. Venanzoni, G. Panccheri, Comp.Phys.C. 180 (2009) 1206-1218

Mixed in $\rho \rightarrow \sigma \gamma$ instead of $\phi \rightarrow (f_0 + \sigma) \gamma$ in non structure model with some rough σ production parameters

 $|\delta A| \sim 2 \times 10^{-5}$ effect only in far tails

Br $(\rho \rightarrow \sigma\gamma) \sim 1 \times 10^{-4}$ [x2 Br $(\rho \rightarrow \pi 0 \pi 0 \gamma)$] Interference with sQED e+e- $\rightarrow \pi^{+}\pi^{-}\gamma$: => ~ 1x10⁻³ x Collinearity selection cuts 1x10⁻² Total rate ~ 10⁻⁵ too small to affect something

 $\rho \rightarrow a_1 \pm \pi \pm$ effect should be same or less: Phys.Rev.D 76 (2007) 033001

STRONG2020 Virtual Workshop

7

Asymmetry with $M\pi 2$

Asymmetry vs $M_{\pi\pi}^2$

Sample of 2π can be selected by energy deposition as MIP with E_{LXe}^{+-} (100 MeV (with some admixture of 2μ)

Comparison with full mixed simulation

Main difference comes from $M_{\pi\pi}^2/s \sim 1$: correspond to virtual/soft radiative corrections

24 November 2021

sQED assumptions

The radiative correction calculations is commonly done in the sQED approach, It's mean that the calculations are performed without form factor, then final Amplitude is scaled by $F(q^2)$

Proper way will be to put $F(q^2)$ to each vertex Thanks to Roman Lee, this calculations was done with above sQED STRONG2020 Virtual Workshop

9

24 November 2021

Virtual + soft corrections

Point Like formula consistent with A.B. Arbuzov et al., Mod.Ph.Lett.A 35 (2020) 25, 2050210, inconsistent with A.Hoefer et al. Eur.Ph.J.C 24 (2002) 51-69 $\delta_{odd}^{Virt}(\lambda) + \delta_{odd}^{Soft}(\lambda,\Delta) = \frac{\alpha}{\pi} \Big\{ 4\ln\left(\frac{1+\beta c}{1-\beta c}\right) \ln\frac{\sqrt{s}}{2\omega_0} + \ln\left(\frac{1+\beta}{1-\beta}\right) \ln\left(\frac{1+\beta c}{1-\beta c}\right) + \frac{c}{\beta(1-c^2)}\ln^2(1-\beta^2) - \frac{2c(1+\beta^2)}{(1-c^2)\beta^2} \Big[\frac{\pi^2}{12} + \frac{1}{4}\ln^2\left(\frac{1+\beta}{1-\beta}\right) + Li_2\left(\frac{1-\beta}{1+\beta}\right) \Big] + Li_2\left(\frac{1-\beta}{1-\beta}\right) \Big\}$ $+\left\{\frac{(1-\beta c)^2}{(1-c^2)\beta^2}\ln(1-\beta c)\ln\left(\frac{1-\beta c}{1-\beta^2}\right)+2Li_2\left(\frac{(1+c)\beta}{1+\beta}\right)+2Li_2\left(\frac{(1+c)\beta}{1+\beta c}\right)+\frac{1-2\beta c+\beta^2}{(1-c^2)\beta^2}\left[\frac{\pi^2}{12}+Li_2\left(\frac{1-2\beta c+\beta^2}{1-\beta^2}\right)\right]\right\}-\left\{c\rightarrow -c\right\}\right\}$

Double FF in box diagram addition:

 $|c \pi a (2 s^2 (-1 + b) (1 + 3 b - (-4 + c^2) b^2 + c^2 b^3)|$ 8 $\{-1 + c^2\} \beta^3 \Delta 2 \Delta 2 - s (1 + \beta)^2 \{-1 + c^2 \beta^2\} \{\Delta 2 + \Delta 2\}\}$ $(12(-1+c^2)\beta^2(-1+c\beta)(1+c\beta)(s-\Delta 2)(s-\Delta 2)) - \frac{1}{\pi\beta-c^2\pi\beta}2cs\alpha$ $Int\left[-\left[\left(2\left(ArcTan\left[\left\{s\left(-1+x\right)+\Delta 2-\Lambda 2\right\}\right)\left/\left(\sqrt{\left(-s^{2}\left(-1+x\right)^{2}-\left(\Delta 2-\Lambda 2\right)^{2}-2s\left(-1+x\right)\left(\Delta 2+\Lambda 2\right)\right)}\right)\right]-1\right)\right]\right]\right]$ $\frac{4 \cos \alpha (1+\beta)^2 (2 - \beta 2 - \beta 2) \log [1-\beta^2]}{2 (-1+\beta^2) \beta^2 (5-\beta^2) (5-\beta^2)}$ ArcTan[(s (-1+2 (1-x)+x)+A2-A2) / $\left(\sqrt{\left(-s^{2}(-1+x)^{2}-(\Delta 2-\Delta 2)^{2}-2s(-1+x)(\Delta 2+\Delta 2)\right)}\right)\right)$ $\left[\sqrt{-\mathbf{s}^{2}\left(-\mathbf{1}+\mathbf{x}\right)^{2}-\left(\Delta 2-\Delta 2\right)^{2}-2\mathbf{s}\left(-\mathbf{1}+\mathbf{x}\right)\left(\Delta 2+\Delta 2\right)}\right]\right), \ \left\{\mathbf{x}, \mathbf{0}, \mathbf{1}\right\}\right] + \frac{1}{\left[-\mathbf{1}+\mathbf{c}^{2}\right]\pi\beta}$ $(1 - 2 c \beta - \beta^2 + 2 c^2 \beta^2)$ $c s \alpha (1 + \beta^2) Int [(2 ArcTan] ((1 - x) \sqrt{(-(-s x + \Lambda^2)^2 - s (-1 + \beta^2)} (x (s (-1 + x) + \Lambda^2 - \Lambda^2) + \Lambda^2)))]/$ (s(-1+x)x+2xA2+A2-xA2)1)/(2 5 - 12 - 12) Log[1-cB] $\left(\int \left[-(-sx + h2)^2 - s(-1 + \beta^2)(s(-1 + x)x + xh2 + h2 - xh2)\right], (x, 0, 1)\right]$ Log [1-82]) / (+ (-1+ CB) (+ (1-2CB-B2+2C2B2) + (-1+2CB-B2) (A2+A2)) $(2(-1+c^2)\pi\beta^2(s-\Delta 2)(s-\Delta 2)) +$ Int[$(2 | ArcTan[(x (s + \triangle 2 - \triangle 2)) / (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + \beta^2) - (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + \beta^2) - (-1 + \beta^2) - (-1 + \beta^2)}) - (\sqrt{(-s^2 (-1 + \beta^2) - (-1 + \beta^2)}))$ $(\mathbf{s} \alpha (\mathbf{1} + \mathbf{2} \mathbf{c} \beta - \beta^2 + \mathbf{2} \mathbf{c}^2 \beta^2)$ $x (s^2 x + x (\Lambda 2 - \Lambda 2)^2 + s (-2 x \Lambda 2 - 2 x \Lambda 2 - 4 \sqrt{\Lambda 2 \Lambda 2} + 4 x \sqrt{\Lambda 2 \Lambda 2}))))$ (25-12-12) Log[1+c B] ArcTan[$(x (s - \Delta 2 + \Delta 2)) / (\sqrt{(-s^2 (-1 + x)^2 (-1 + \beta^2) - x (s^2 x + x (\Delta 2 - \Delta 2)^2 + (\Delta 2 - \Delta 2)^2 +$ Log [1 - 82]) / $s(-2xA2-2xA2-4\sqrt{A2A2}+4x\sqrt{A2A2}))))))/$ $(2(-1+c^2)\pi\beta^2(s-\Delta 2)(s-\Delta 2)) +$ $\left(\left(\frac{1}{4} \operatorname{s} \left(-1+x\right) \left(-1+2 \operatorname{c} \beta-\beta^{2}\right)-\frac{1}{4} \operatorname{s} \left(-1+\beta^{2}\right)+\frac{1}{4} \operatorname{s} x \left(-1+\beta^{2}\right)+x \sqrt{\delta 2 \wedge 2}\right)\right)$ $\frac{\mathbf{c}\,\mathbf{s}\,\alpha\,\left(\mathbf{1}+\beta\right)^2\,\left(\mathbf{2}\,\mathbf{s}-\Delta\mathbf{2}-\Delta\mathbf{2}\right)\,\mathbf{Log}\left[\mathbf{1}-\beta^2\right]^2}{\mathbf{4}\,\left(-\mathbf{1}+\mathbf{c}^2\right)\,\pi\beta^2\,\left(\mathbf{s}-\Delta\mathbf{2}\right)\,\left(\mathbf{s}-\Delta\mathbf{2}\right)}+$ 11-s2 (-1+x)2 (-1+82) $x (s^2 x + x (\Delta 2 - \Lambda 2)^2 + s (-2 x \Delta 2 - 2 x \Lambda 2 - 4 \sqrt{\Delta 2 \Lambda 2} + 4 x \sqrt{\Delta 2 \Lambda 2}))), (x, 0, 1))/$ $(1 - 2c\beta - \beta^2 + 2c^2\beta^2)$ $(4(-1+c^2)\pi\beta^2) - (s\alpha(1+c\beta)(s(1+2c\beta-\beta^2+2c^2\beta^2) - (1+2c\beta+\beta^2)(\delta^2+\delta^2)))$ (2 s - A2 - A2) Log [1 - B2] Int $\left[\left(2 \left[ArcTan \right] \left(x \left(s + \delta 2 - \delta 2 \right) \right) \right) / \left[\int \left[-s^2 \left(-1 + x \right)^2 \left(-1 + \beta^2 \right) - 1 + \beta^2 \right] \right] \right]$ $\frac{(1 - 1 - 1 - 1)(1 - 1 - 1)}{\log[1 - 2 c \beta + \beta^2]} / (2 (-1 + c^2) \pi \beta^2 (s - \Delta 2) (s - \Delta 2))$ $x (s^{2}x + x (h^{2} - h^{2})^{2} + s (-2xh^{2} - 2xh^{2} - 4\sqrt{h^{2}h^{2}} + 4x\sqrt{h^{2}h^{2}}))))] +$ ArcTan $\left(x(s-\Delta 2 + \Delta 2)\right) / \left(\sqrt{(-s^2(-1+x)^2(-1+\beta^2) - x(s^2x+x(\Delta 2 - \Delta 2)^2 + (-1+\beta^2) - x(s^2x+x(\Delta 2 - \Delta 2))^2 + (-1+\beta^2) + (-1+\beta^2) + x(s^2x+x(\Delta 2 - \Delta 2))^2 + (-1+\beta^2) + x(s^2x+x(\Delta 2 - \Delta 2))^2 + (-1+\beta^2) + x(s^2x+x(\alpha 2 - \Delta 2))^2 + (-1+\beta^2) + x(s^2x+x(\alpha 2 - \Delta 2))^2 + x(s^2x+x(\alpha 2 - \Delta$ sα (1-2cβ-β2+2c2β2) (2s-b2-b2) s (-2x A2-2x A2-4 VA2 A2 +4x VA2 A2))))))/ Log[1-2c8+82]2)/ $(4(-1+c^2)\pi\beta^2(s-\Delta 2)(s-\Delta 2))$ $\left(\left(-\frac{1}{4}s\left(-1+\beta^{2}\right)+\frac{1}{4}sx\left(-1+\beta^{2}\right)-\frac{1}{4}s\left(-1+x\right)\left(1+2c\beta+\beta^{2}\right)+x\sqrt{\delta^{2}\Lambda^{2}}\right)\right)$ $(s \alpha (1 + 2 c \beta - \beta^2 + 2 c^2 \beta^2) (2 s - \Delta 2 - \Delta 2)$ [-s2 (-1+x)2 (-1+62) - $\log[1-\beta^2] \log[1+2c\beta+\beta^2] /$ $x (s^2 x + x (\Delta 2 - \Lambda 2)^2 + s (-2 x \Delta 2 - 2 x \Lambda 2 - 4 \sqrt{\Delta 2 \Lambda 2} + 4 x \sqrt{\Delta 2 \Lambda 2}))), (x, 0, 1)])/$ $(2(-1+c^2)\pi\beta^2(s-\Delta 2)(s-\Delta 2))$ $(4(-1+c^2)\pi\beta^2) + (2\alpha(s(-1+2c\beta+\beta^2-2c^2\beta^2)+(1-2c\beta+\beta^2)\beta^2))$ (sa (1+2cB-B2+2c2B2) (2s-b2-b2) Int [- ((s (s (-1+x) + $\frac{1}{4}$ s (-2+x) (-1+2 c $\beta - \beta^2$) - $\frac{1}{4}$ s (2-3 x) (-1+ β^2)) Log[1+2c \$+ \$2]2)/ $\left(x\left(\frac{1}{2}s\left(-1+2c\beta-\beta^{2}\right)-\frac{1}{2}s\left(-1+x\right)\left(-1+\beta^{2}\right)\right)Log\left[-(-1+x)\left(s-\delta^{2}\right)\right]+$ (4 (-1+c²) πβ² (s - Δ2) (s - Δ2)) $= \frac{1}{4} \operatorname{sx} \left(-1 + \beta^2 \right) - \operatorname{x} \left(\operatorname{s} + \frac{1}{4} \operatorname{s} \left(-1 + 2 \operatorname{c} \beta - \beta^2 \right) \right) \operatorname{Log} \left[\frac{1}{4} \operatorname{sx}^2 \left(-1 + \beta^2 \right) + (-1 + \operatorname{x}) \Delta 2 \right] +$ (-1+c2) #2 (s-42) (s $\left(s(-1+x)+\frac{1}{4}sx^{2}(-1+\beta^{2})\right)\log\left[-\delta^{2}+x\left(\frac{1}{4}s(-1+2c\beta-\beta^{2})+\frac{1}{4}s(-1+\beta^{2})+\delta^{2}\right)\right]\right)$ $\left(4x\left(\frac{1}{4}s\left(-1+2c\beta-\beta^{2}\right)-\frac{1}{4}s\left(-1+x\right)\left(-1+\beta^{2}\right)\right)\left(s-sx-\frac{1}{4}sx^{2}\left(-1+\beta^{2}\right)\right)$ $\left(s - \frac{1}{4}sx(-1+\beta^2) - x(s + \frac{1}{4}s(-1+2c\beta-\beta^2))\right)$, (x, 0, 1) $((-1+c^2) \pi \beta^2 (s-\delta 2)) + (2 \alpha (s (1+2c\beta-\beta^2+2c^2\beta^2) - (1+2c\beta+\beta^2) \delta 2))$ Int[-((s (s (-1+x) - $\frac{1}{4}$ s (2-3x) (-1+ β^2) - $\frac{1}{4}$ s (-2+x) (1+2c β + β^2)) $\left(x\left(-\frac{1}{4}s(-1+x)(-1+\beta^{2})-\frac{1}{4}s(1+2c\beta+\beta^{2})\right)Log\left[-(-1+x)(s-\beta^{2})\right]+$ $\left(\mathbf{s} - \frac{1}{4}\mathbf{s} \times \left(-1 + \beta^2\right) - \times \left(\mathbf{s} - \frac{1}{4}\mathbf{s} \left(1 + 2\mathbf{c}\beta + \beta^2\right)\right)\right) \log\left[\frac{1}{4}\mathbf{s} \times^2 \left(-1 + \beta^2\right) + \left(-1 + \times\right)\beta^2\right] + \left(-1 + \infty\right)\beta^2\right] + \left(-1 + \infty\right)\beta^2$ $c \alpha (1 + \beta^2) \log \left[\frac{1}{4} (1 - \beta^2)\right] \log \left[-1 + \frac{2}{1 + \sqrt{\beta^2}}\right]$ $\left(\mathbf{s}\left(-1+\mathbf{x}\right)+\frac{1}{4}\mathbf{s}\,\mathbf{x}^{2}\left(-1+\beta^{2}\right)\right)\,\log\left[-\delta 2+\mathbf{x}\left(\frac{1}{4}\,\mathbf{s}\left(-1+\beta^{2}\right)-\frac{1}{4}\,\mathbf{s}\left(1+2\,\mathbf{c}\,\beta+\beta^{2}\right)+\delta 2\right)\right]\right)\right)/\delta \mathbf{x}^{2}$ (-1+c2) = 02 $\left(4x\left(s-sx-\frac{1}{4}sx^{2}\left(-1+\beta^{2}\right)\right)\left(-\frac{1}{4}s\left(-1+x\right)\left(-1+\beta^{2}\right)-\frac{1}{4}s\left(1+2c\beta+\beta^{2}\right)\right)\right)$ $(s - \frac{1}{2} s \times (-1 + \beta^2) - x (s - \frac{1}{2} s (1 + 2 c \beta + \beta^2)))), (x, 0, 1)])/$ a (1+ C A) $\left(\left(-1+\mathbf{c}^{2}\right)\pi\beta^{2}\left(\mathbf{s}-\Delta2\right)\right)+\left(2\alpha\left(\mathbf{s}\left(-1+2\mathbf{c}\beta+\beta^{2}-2\mathbf{c}^{2}\beta^{2}\right)+\left(1-2\mathbf{c}\beta+\beta^{2}\right)\Delta2\right)$ $Int\left[-\left(\left(s\left(s\left(-1+x\right)+\frac{1}{4}s\left(-2+x\right)\left(-1+2c\beta-\beta^{2}\right)-\frac{1}{4}s\left(2-3x\right)\left(-1+\beta^{2}\right)\right)\right)\right]$ $\left(x\left(\frac{1}{4}s\left(-1+2c\beta-\beta^{2}\right)-\frac{1}{4}s\left(-1+x\right)\left(-1+\beta^{2}\right)\right)Log\left[-\left(-1+x\right)\left(s-\Lambda^{2}\right)\right]+$ $\left(s - \frac{1}{4}sx(-1 + \beta^{2}) - x(s + \frac{1}{4}s(-1 + 2c\beta - \beta^{2}))\right) \log\left[\frac{1}{4}sx^{2}(-1 + \beta^{2}) + (-1 + x)A^{2}\right] +$ $\left(s(-1+x) + \frac{1}{4} s x^2 (-1+\beta^2) \right) \log \left[-\Lambda 2 + x \left(\frac{1}{4} s (-1+2c\beta-\beta^2) + \frac{1}{4} s (-1+\beta^2) + \Lambda 2 \right) \right] \right)$ $\left(4x\left(\frac{1}{4}s\left(-1+2c\beta-\beta^{2}\right)-\frac{1}{4}s\left(-1+x\right)\left(-1+\beta^{2}\right)\right)\left(s-sx-\frac{1}{4}sx^{2}\left(-1+\beta^{2}\right)\right)$ $\left(s - \frac{1}{4}sx(-1+\beta^2) - x(s + \frac{1}{4}s(-1+2c\beta-\beta^2)))\right), (x, 0, 1)\right)/$ $(\{-1 + c^2\} \pi \beta^2 (1 + c \beta) (s - \Delta 2) (s - \Delta 2)) +$ $((-1 + c^2) \pi \beta^2 (s - \Lambda 2)) + (2 \alpha (s (1 + 2 c \beta - \beta^2 + 2 c^2 \beta^2) - (1 + 2 c \beta + \beta^2) \Lambda 2)$ Int $\left[-\left(\left|s\left(s\left(-1+x\right)-\frac{1}{4}s\left(2-3x\right)\left(-1+\beta^{2}\right)-\frac{1}{4}s\left(-2+x\right)\left(1+2c\beta+\beta^{2}\right)\right)\right]\right]$ $\left\{x\left(-\frac{1}{4}s\left(-1+x\right)\left(-1+\beta^{2}\right)-\frac{1}{4}s\left(1+2c\beta+\beta^{2}\right)\right)Log\left[-\left(-1+x\right)\left(s-\Lambda^{2}\right)\right]+\right\}$ $\left(\mathbf{s} - \frac{1}{4} \mathbf{s} \mathbf{x} \left(-1 + \beta^2\right) - \mathbf{x} \left(\mathbf{s} - \frac{1}{4} \mathbf{s} \left(1 + 2 \mathbf{c} \beta + \beta^2\right)\right)\right) \log\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right] + \left(-1 + \mathbf{x}\right) \wedge 2\left[\frac{1}{4} \mathbf{s} \mathbf{x}^2 \left(-1 + \beta^2\right) + (-1 + \mathbf{x}) \wedge 2\right]$ $\log[1 - \sqrt{1 + \frac{8(-1+\beta^2)}{\lambda^2}}]$ $\left[s(-1+x)+\frac{1}{4}sx^{2}(-1+\beta^{2})\right] \log\left[-\Lambda^{2}+x\left(\frac{1}{4}s(-1+\beta^{2})-\frac{1}{4}s(1+2c\beta+\beta^{2})+\Lambda^{2}\right)\right]\right)/$ $\left(4 \times \left(\mathbf{s} - \mathbf{s} \times -\frac{1}{4} \mathbf{s} \times^2 \left(-1 + \beta^2\right)\right) \left(-\frac{1}{4} \mathbf{s} \left(-1 + \mathbf{x}\right) \left(-1 + \beta^2\right) - \frac{1}{4} \mathbf{s} \left(1 + 2 \mathbf{c} \beta + \beta^2\right)\right)\right)$ $1 = \frac{-\frac{1}{2} \pm \left(-\frac{1}{2} \pm 2 \pm (1 + 2 \pm (1 + 2 + 1)^2) + \frac{1}{2} \pm \left(-\frac{1}{2} \pm (1 + 2 \pm (1 + 2 \pm 1)^2) + \frac{1}{2} \pm \left(-\frac{1}{2} \pm (1 + 2 \pm 1)^2\right) + \frac{1}{2} \pm \left(-\frac{1}{2} \pm (1 + 2 \pm 1)^2\right)}$ $\left(s - \frac{1}{4}sx(-1 + \beta^2) - x(s - \frac{1}{4}s(1 + 2c\beta + \beta^2)))\right), (x, 0, 1)\right)/$ $\left(\left(-1+c^{2}\right)\pi\beta^{2}\left(s-\Lambda^{2}\right)\right)-\frac{ics\alpha\left(1+\beta^{2}\right)\left(2s-\Lambda^{2}-\Lambda^{2}\right)\log[2]}{\left(-1+c^{2}\right)\beta^{2}\left(s-\Lambda^{2}\right)\left(s-\Lambda^{2}\right)}+$ $\frac{\cos \alpha (1+\beta^2) (2s-\beta 2-\beta 2) \log (2)^2}{(-1+c^2) \cos^2 (n-\beta 2) (n-\beta 2)} +$ $(2(-1+c^2)\pi\beta^2(-1+c\beta)(s-\delta^2))$ $\frac{4 \, \mathrm{s} \, \alpha \, (1 - 2 \, \mathrm{c} \, \beta - \beta^2 + 2 \, \mathrm{c}^2 \, \beta^2) \, (2 \, \mathrm{s} - \beta 2 - \beta 2) \, \log(1 - \mathrm{c} \, \beta)}{2 \, (-1 + \mathrm{c}^2) \, \beta^2 \, (\mathrm{s} - \beta 2) \, (\mathrm{s} - \beta 2)} +$ $\frac{s\alpha \left(1 - 2c\beta - \beta^2 + 2c^2\beta^2\right) \left(2s - \beta^2 - \beta^2\right) \log \left(1 - c\beta\right)^2}{2\left(-1 + c^2\right) = \beta^2 \left(s - \beta^2\right) \left(s - \beta^2\right) \left(s - \beta^2\right)}$

24 November 2021

 $\frac{1 \operatorname{s} \alpha \left(1 + 2 \operatorname{c} \beta - \beta^{2} + 2 \operatorname{c}^{2} \beta^{2}\right) \left(2 \operatorname{s} - \beta 2 - \beta 2 - \beta 2}{2 \left(-1 + \operatorname{c}^{2}\right) \beta^{2} \left(\operatorname{s} - \beta 2\right) \left(\operatorname{s} - \beta 2\right)} \left(\operatorname{s} - \beta 2\right)}$ $\frac{s \alpha \left(1 + 2 c \beta - \beta^2 + 2 c^2 \beta^2\right) \left(2 s - \beta^2 - \beta^2\right) \log (1 + c \beta)^2}{2 \left(-1 + c^2\right) \beta^2 \left(s - \beta^2\right) \left(s - \beta^2\right) \left(s - \beta^2\right)} +$ $\frac{c \, s \, \alpha \, (1 + \beta^2) \, (2 \, s - \Delta^2 - \Delta^2) \, \log[2] \, \log[1 - \beta^2]}{(-1 + c^2) = \beta^2 \, (s - \Delta^2) \, (s - \Delta^2)} =$ $i c s \alpha (1 + \beta^2) (2 s - \beta 2 - \beta 2) Log \left[\frac{1}{2} (1 - \sqrt{\beta^2})\right]$ $\frac{2 \operatorname{cs} \alpha \left(1 + \beta^{2}\right) \left(2 \operatorname{s} - \beta 2 - \beta 2\right) \operatorname{Log}[2] \operatorname{Log}\left[\frac{1}{2} \left(1 - \sqrt{\beta^{2}}\right)\right]}{\left(-1 + \operatorname{c}^{2}\right) \pi \beta^{2} \left(\operatorname{s} - \beta 2\right) \left(\operatorname{s} - \beta 2\right)}$ $\frac{c s \alpha (1 + \beta^2) (2 s - \Delta 2 - \Delta 2) \log[1 - \beta^2] \log[\frac{1}{2} (1 - \sqrt{\beta^2})]}{(-1 + c^2) \pi \beta^2 (s - \Delta 2) (s - \Delta 2)}$ $\frac{\mathbf{c} \mathbf{s} \alpha \left(\mathbf{1} + \beta^2\right) \left(\mathbf{2} \mathbf{s} - \Delta \mathbf{2} - \Delta \mathbf{2}\right) \mathbf{Log} \left[\frac{1}{2} \left(\mathbf{1} - \sqrt{\beta^2}\right)\right]^2}{\left(-\mathbf{1} + \mathbf{c}^2\right) \pi \beta^2 \left(\mathbf{s} - \Delta \mathbf{2}\right) \left(\mathbf{s} - \Delta \mathbf{2}\right)},$ $(s^2 (1 - 2c\beta - \beta^2 + 2c^2\beta^2) + (1 - 2c\beta + \beta^2) \Delta 2 A 2 - s (-1 + c\beta)^2 (\Delta 2 + A 2))$ $\log \left[1 - \frac{-\frac{1}{4}s\left(-1 + 2c\beta - \beta^2\right) + \frac{1}{4}s\left(-1 + \beta^2\right)}{-\frac{1}{4}s\left(-1 + 2c\beta - \beta^2\right) - \frac{1}{4}s\left(-1 + \beta^2\right)}\right]^2\right] \Big/$ $((-1+c^2) \pi \beta^2 (-1+c \beta) (s-\Delta 2) (s-\Delta 2)) +$ $\alpha (-1 + c\beta) \left(s^{2} \left(1 + 2 c\beta - \beta^{2} + 2 c^{2} \beta^{2} \right) + \left(1 + 2 c\beta + \beta^{2} \right) \Delta 2 \Delta 2 - s \left(1 + c\beta \right)^{2} \left(\Delta 2 + \Delta 2 \right) \right)$ $log \left[1 - \frac{\frac{1}{4} s (-1 + \beta^2) + \frac{1}{4} s (1 + 2 c \beta + \beta^2)}{-\frac{1}{4} s (-1 + \beta^2) + \frac{1}{4} s (1 + 2 c \beta + \beta^2)}\right]^2 \right] / (1 + 2 c \beta + \beta^2)$ α (1 + c β) (s {1 - 2 c $\beta - \beta^2 + 2 c^2 \beta^2$ } + (-1 + 2 c $\beta - \beta^2$) $\Delta 2$ } $-\frac{\frac{1}{2} \frac{1}{8} \left(-\frac{1}{2} \frac{2}{2} \frac{1}{6} \frac{(-\frac{1}{2})^2}{(-\frac{1}{2})^2} + \frac{1}{8} \frac{1}{8} \left(-\frac{1}{2} \frac{(-\frac{1}{2})^2}{(-\frac{1}{2})^2} + \sqrt{\frac{1}{2} + \frac{1}{8} \frac{(-\frac{1}{2})^2}{(-\frac{1}{2})^2} + \frac{1}{8} \frac{(-\frac{1$ $x (1 + c\beta) (s (1 - 2c\beta - \beta^2 + 2c^2\beta^2) + (-1 + 2c\beta - \beta^2)\Delta 2)$

1+ 1+ 1+ 1/2 -bs (-2+2 c 0+0)+bs (-2+0) + 12 + s (-2+0) $(4(-1+c^2)\pi\beta^2(-1+c\beta)(s-\beta^2))$ $x (1 + c\beta) (s (1 - 2c\beta - \beta^2 + 2c^2\beta^2) + (-1 + 2c\beta - \beta^2) \delta 2)$ $1 = \frac{1 + 5 \left(-2 + 2 \cos((d^2) + 5 + 5) + 1 + d^2 \right)}{1 + 5 + 5 \left(-2 + 2 \cos((d^2) + 5 + 5) + 5 + 5 + 1 + d^2 \right)}$ $Log[1 + \sqrt{1 + \frac{5(-1+\beta^2)}{\lambda^2}}] Log[- \frac{-\frac{1}{2}s\left(-\frac{1}{2}+2e^{\frac{1}{2}+e^{\frac{1}{2}}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+e^{\frac{1}{2}}\right)}{-\frac{1}{2}s\left(-\frac{1}{2}+e^{\frac{1}{2}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+e^{\frac{1}{2}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+e^{\frac{1}{2}}\right)}{\sqrt{2}}+\sqrt{2}+\frac{s\left(-\frac{1}{2}+e^{\frac{1}{2}}\right)}{\sqrt{2}}$ $(2(-1+c^2)\pi\beta^2(-1+c\beta)(s-\Delta 2)) +$ $\left[\alpha (\mathbf{1} + \mathbf{c}\beta) \left(\mathbf{s} \left(\mathbf{1} - \mathbf{2}\mathbf{c}\beta - \beta^2 + \mathbf{2}\mathbf{c}^2\beta^2\right) + \left(-\mathbf{1} + \mathbf{2}\mathbf{c}\beta - \beta^2\right) \Delta \mathbf{2}\right)\right]$ $\log\left[-\frac{-\frac{1}{4}s\left(-1+2c\beta-\beta^2\right)+\frac{1}{4}s\left(-1+\beta^2\right)}{-\frac{1}{4}s\left(-1+2c\beta-\beta^2\right)-\frac{1}{4}s\left(-1+\beta^2\right)}+\sqrt{1+\frac{s\left(-1+\beta^2\right)}{\Delta 2}}\right]$ $\log \left[\frac{-\frac{1}{2} s \left(-1 + 2 c \beta - \beta^{2}\right) + \frac{1}{2} s \left(-1 + \beta^{2}\right)}{-\frac{1}{2} s \left(-1 + 2 c \beta - \beta^{2}\right) - \frac{1}{2} s \left(-1 + \beta^{2}\right)} + \sqrt{1 + \frac{8 \left(-1 + \beta^{2}\right)}{\beta 2}} \right] \right] / \frac{1}{\beta 2}$ $(2(-1+c^2)\pi\beta^2(-1+c\beta)(s-\alpha^2))$ $(-1+c\beta)$ (s $(1+2c\beta-\beta^2+2c^2\beta^2) - (1+2c\beta+\beta^2)\beta^2$) $1 = \frac{\frac{3}{2} x \left(-\frac{1}{2} x \right)^2 + \frac{3}{2} x \left(\frac{1}{2} x \right)^2$ $\log[1 - \sqrt{1 + \frac{5(-1+\beta^2)}{\beta^2}}] \log[\frac{\frac{1}{2} \frac{1}{2} \frac{$ $(2(-1+c^2)\pi\beta^2(1+c\beta)(s-\Delta 2))$ $(-1 + c\beta)$ (s $(1 + 2c\beta - \beta^2 + 2c^2\beta^2) - (1 + 2c\beta + \beta^2)\delta 2$) 1+ 1+ = (+1+1) $\frac{\frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{1}{2}$ $(4(-1+c^2)\pi\beta^2(1+c\beta)(s-\Delta^2))$ $(-1+c\beta)$ (s $(1+2c\beta-\beta^2+2c^2\beta^2) - (1+2c\beta+\beta^2) \Delta 2$) $1 = \frac{\frac{1}{2} s \left((1 + 1 + 1)^2 \right) + \frac{1}{2} s \left((1 + 2 + 1) + 1 \right)^2}{-\frac{1}{2} s \left((-2 + 1)^2 \right) + \frac{1}{2} s \left((2 + 2 + 1)^2 \right)}$ $\frac{\frac{3 \cdot s \left(-3 + t^2\right) + \frac{3}{2} \cdot s \left(3 + 2 \cdot c \left(3 + t^2\right)}{-\frac{3}{2} \cdot s \left(-1 + t^2\right) + \frac{3}{2} \cdot s \left(3 + 2 \cdot c \left(3 + t^2\right)}{+ \frac{3}{2} \cdot s \left(3 + 2 \cdot c \left(3 + t^2\right)\right)} + \sqrt{1 + \frac{s \left(-3 + t^2\right)}{+ 2}}$ $(2(-1+c^2)\pi\beta^2(1+c\beta)(s-\delta^2))$ $\alpha (-1 + c \beta) (s (1 + 2 c \beta - \beta^2 + 2 c^2 \beta^2) - (1 + 2 c \beta + \beta^2) \delta 2)$ $Log\left[-\frac{\frac{1}{2} s (-1 + \beta^{2}) + \frac{1}{2} s (1 + 2 c \beta + \beta^{2})}{-\frac{1}{2} s (-1 + \beta^{2}) + \frac{1}{2} s (1 + 2 c \beta + \beta^{2})} + \sqrt{1 + \frac{s (-1 + \beta^{2})}{\beta 2}}\right]$ $\log \Big[\frac{\frac{1}{4} \pm \left(-1 + \beta^2\right) + \frac{1}{4} \pm \left(1 + 2 \pm \beta + \beta^2\right)}{-\frac{1}{4} \pm \left(-1 + \beta^2\right) + \frac{1}{4} \pm \left(1 + 2 \pm \beta + \beta^2\right)} + \sqrt{1 + \frac{\pm \left(-1 + \beta^2\right)}{\Delta 2}} \Big] \Big] \Big/$ $(2(-1+c^2)\pi\beta^2(1+c\beta)(s-\Delta 2)) +$ $\frac{c \alpha (1+\beta^2) \log \left[-1+\frac{2}{1+\sqrt{\beta^2}}\right] \log \left[-\frac{c}{s-1}\right]}{(-1+c^2) \pi \beta^2}.$ α (1 + c β) (s (1 - 2 c $\beta - \beta^2 + 2 c^2 \beta^2$) + (-1 + 2 c $\beta - \beta^2$) \wedge 2) $1 - \frac{-\frac{1}{2}s\left(-\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}s\left(-\frac{1}{2}-\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)}{-\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)}{-\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)}{-\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)}{-\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)+\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)}{-\frac{1}{2}s\left(-\frac{1}{2}+\frac{1}{2}e^{\frac{1}{2}-\frac{1}{2}}\right)}$ $\int 1 + \frac{s(-1+\beta^2)}{1+\beta^2} |\log[-\beta^2]$ $\frac{-\frac{1}{2} \times \left(-\frac{1}{2} \times \frac{2}{2} \times \frac{1}{2} \times \frac{1}{2}$ $(2(-1+c^2)\pi\beta^2(-1+c\beta)(s-\Lambda 2)) +$ (-1+c²) πβ² (s-∆2) (s-∆2)

```
\alpha (1 + c\beta) (s (1 - 2c\beta - \beta^2 + 2c^2\beta^2) + (-1 + 2c\beta - \beta^2) \wedge 2)
                                                                                                                                                                             1+ 1+ 5(110)
                                                                                           \frac{-\frac{1}{2} \frac{1}{2} \left( -\frac{1}{2} \frac{1}{2} \frac{1}{
                   (4(-1+c^2)\pi\beta^2(-1+c\beta)(s-\beta^2))
                   \alpha (1 + c\beta) (s (1 - 2c\beta - \beta^2 + 2c^2\beta^2) + (-1 + 2c\beta - \beta^2) \wedge 2)
                                                                                                                                                                                                                                                                                                                                                               1 = \frac{-\frac{1}{2} \pi \left( -1 + 2 \, c \, (1 + i)^2 \right) + \frac{1}{2} \pi \left( -1 + i \right)^2}{-\frac{1}{2} \pi \left( -1 + 2 \, c \, (1 + i)^2 \right) + \frac{1}{2} \pi \left( -1 + i \right)^2}
                                      Log 1+ 1+ 5 (-1+82) Log -
                   (2(-1+c^2)\pi\beta^2(-1+c\beta)(s-\beta^2)) +
                   \alpha (1+c\beta) (s (1-2c\beta-\beta<sup>2</sup>+2c<sup>2</sup>\beta<sup>2</sup>) + (-1+2c\beta-\beta<sup>2</sup>) \wedge2)
                                      Log \left[ -\frac{\frac{1}{2} s \left(-1 + 2 c \beta - \beta^{2}\right) + \frac{1}{2} s \left(-1 + \beta^{2}\right)}{-\frac{1}{2} s \left(-1 + 2 c \beta - \beta^{2}\right) - \frac{1}{2} s \left(-1 + \beta^{2}\right)} + \sqrt{1 + \frac{s \left(-1 + \beta^{2}\right)}{\beta 2}} \right]
                                 \log \left[ \frac{-\frac{1}{2} s \left(-1+2 c \beta - \beta^{2}\right) + \frac{1}{2} s \left(-1+\beta^{2}\right)}{-\frac{1}{2} s \left(-1+2 c \beta - \beta^{2}\right) - \frac{1}{2} s \left(-1+\beta^{2}\right)} + \sqrt{1 + \frac{s \left(-1+\beta^{2}\right)}{\Lambda^{2}}} \right] \right] / \frac{1}{2}
                   (2(-1+c^2)\pi\beta^2(-1+c\beta)(s-\Delta 2)) -
                        (-1 + c\beta) (s (1 + 2c\beta - \beta^2 + 2c^2\beta^2) - (1 + 2c\beta + \beta^2) \wedge 2)
                                                                                                                                                                                                                                                                                                                                                                         1 = \frac{\frac{1}{2} s \left(-1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + 2 c \left(1 + i \beta^2\right) + \frac{1}{2} s \left(1 + i \beta^2\right) + \frac{1}{2} s
                                      \log[1 - \sqrt{1 + \frac{8(-1 + \beta^2)}{12}}] \log[-
                   (2(-1+c^2)\pi\beta^2(1+c\beta)(s-\Lambda 2))
                        (-1 + c\beta) (s (1 + 2c\beta - \beta^2 + 2c^2\beta^2) - (1 + 2c\beta + \beta^2) \land 2)
                                                                                                                                                                   1 + \sqrt{1 + \frac{3 \cdot (-1 + \beta^2)}{\beta^2}}
                                                                                                \frac{b_{R}(-1,c^{2})+b_{R}(1+2\pi)(c^{2})}{-b_{R}(-1,c^{2})+b_{R}(1+2\pi)(c^{2})} + \sqrt{1 + \frac{n(-1,c^{2})}{\sqrt{2}}}
                        (4(-1+c^2)\pi\beta^2(1+c\beta)(s-\Lambda 2))
                        (-1 + c\beta) (s (1 + 2c\beta - \beta^2 + 2c^2\beta^2) - (1 + 2c\beta + \beta^2) \wedge 2)
                                                                                                                                                                                                                                                                                                                                                           \mathbf{1} = \frac{\frac{1}{2} \frac{1}{2} \frac{1
                                      \log[1 + \sqrt{1 + \frac{s(-1+\beta^2)}{2}}] \log[-
                   (2(-1+c^2)\pi\beta^2(1+c\beta)(s-\Lambda 2)) -
              \alpha (-1+c \beta) (s (1+2 c \beta - \beta<sup>2</sup> + 2 c<sup>2</sup> \beta<sup>2</sup>) - (1+2 c \beta + \beta<sup>2</sup>) \wedge2)
                                 Log\left[-\frac{\frac{1}{2} s \left(-1 + \beta^{2}\right) + \frac{1}{2} s \left(1 + 2 c \beta + \beta^{2}\right)}{-\frac{1}{2} s \left(-1 + \beta^{2}\right) + \frac{1}{2} s \left(1 + 2 c \beta + \beta^{2}\right)} + \sqrt{1 + \frac{s \left(-1 + \beta^{2}\right)}{A2}}\right]
                            \log\left[\frac{\frac{1}{4}s\left(-1+\beta^{2}\right)+\frac{1}{4}s\left(1+2c\beta+\beta^{2}\right)}{-\frac{1}{4}s\left(-1+\beta^{2}\right)+\frac{1}{4}s\left(1+2c\beta+\beta^{2}\right)}+\sqrt{1+\frac{s\left(-1+\beta^{2}\right)}{\Lambda^{2}}}\right]\right]
              (2(-1+c^2)\pi\beta^2(1+c\beta)(s-\Lambda 2)) +
\frac{\mathbf{c} \alpha \left(\mathbf{1} + \beta^2\right) \log \left[-\mathbf{1} + \frac{2}{\mathbf{1} + \left[\beta^2\right]}\right] \log \left[-\frac{5}{6 - 12}\right]}{\left(-\mathbf{1} + \mathbf{c}^2\right) \pi \beta^2}
    \left(\mathbf{s} \alpha \left(\mathbf{1} - \mathbf{2} \mathbf{c} \beta - \beta^2 + \mathbf{2} \mathbf{c}^2 \beta^2\right) \left(\mathbf{2} \mathbf{s} - \beta \mathbf{2} - \beta^2\right) \operatorname{PolyLog}\left[\mathbf{2}, -\frac{-\mathbf{1} + \beta^2}{-\mathbf{1} + \mathbf{2} \mathbf{c} \beta} - \beta^2\right]\right)
              (2(-1+c^2)\pi\beta^2(s-\Delta 2)(s-\Delta 2)) +
    \left(\mathbf{s} \alpha \left(\mathbf{1} + \mathbf{2} \mathbf{c} \beta - \beta^2 + \mathbf{2} \mathbf{c}^2 \beta^2\right) \left(\mathbf{2} \mathbf{s} - \beta \mathbf{2} - \beta \mathbf{2}\right) \operatorname{PolyLog}\left[\mathbf{2}, \frac{-\mathbf{1} + \beta^2}{\mathbf{1} + \mathbf{2} \mathbf{c} \beta + \beta^2}\right]\right) \right)
    (2(-1+c^2)\pi\beta^2(s-\Delta 2)(s-\Delta 2)) +
    c s \alpha (1 + \beta^2) (2 s - \Delta 2 - \Delta 2)  PolyLog\left[2, \frac{-1-\beta^2}{\left(-1 - \sqrt{\beta^2}\right)^2}\right]
```

 $\frac{2 \operatorname{c} \alpha \left(1 + \beta^{2}\right) \operatorname{PolyLog}\left[2, -\frac{\operatorname{s}\left(1 + \beta^{2}\right)}{2 \left(\operatorname{s} - \operatorname{s} \sqrt{\beta^{2}}\right)}\right]}{\left(-1 + \operatorname{c}^{2}\right) \pi \beta^{2}}$ $2 c \alpha (1 + \beta^2) \operatorname{PolyLog} \left[2, -\frac{s (1 + \beta^2)}{2 \left(s + s \sqrt{\beta^2}\right)}\right]$ (-1+c2) = B2 $\alpha (\mathbf{1} + \mathbf{c} \beta) (\mathbf{s}^2 (\mathbf{1} - \mathbf{2} \mathbf{c} \beta - \beta^2 + \mathbf{2} \mathbf{c}^2 \beta^2) + (\mathbf{1} - \mathbf{2} \mathbf{c} \beta + \beta^2) \Delta 2 \Delta 2 - \mathbf{s} (-\mathbf{1} + \mathbf{c} \beta)^2 (\Delta 2 + \Delta 2)$ $\operatorname{PolyLog}\left[2, \frac{1 + \frac{-5 \cdot x \left(-1 + 2 \cdot c \cdot d \cdot d^2\right) + 5 \cdot x \left(-1 + d^2\right)}{-1 + \frac{-5 \cdot x \left(-1 + 2 \cdot c \cdot d \cdot d^2\right) + 5 \cdot x \left(-1 + d^2\right)}{-1 + \frac{-5 \cdot x \left(-1 + 2 \cdot c \cdot d \cdot d^2\right) + 5 \cdot x \left(-1 + d^2\right)}{-5 \cdot x \left(-1 + 2 \cdot d^2\right) + 5 \cdot x \left(-1 + d^2\right)}}\right]\right] \right)$ $(\{-1+c^2\} \pi \beta^2 (-1+c\beta) (s-\Delta 2) (s-\Delta 2)) +$ $(-1 + c\beta)$ $(s^2 (1 + 2c\beta - \beta^2 + 2c^2\beta^2) + (1 + 2c\beta + \beta^2) \Delta 2 \Delta 2 - s (1 + c\beta)^2 (\Delta 2 + \Delta 2))$ $\frac{-\frac{1}{2} \left(\frac{1}{2} - \frac{2}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}$ $PolyLog[2, \frac{1 + \frac{\frac{1}{2} S (-1 + i^2) + \frac{1}{2} S (1 + 2 e i + i^2)}{-\frac{1}{2} S (-1 + i^2) + \frac{1}{2} S (1 + 2 e i + i^2)}}{-1 + \frac{\frac{1}{2} S (-1 + i^2) + \frac{1}{2} S (1 + 2 e i + i^2)}{-\frac{1}{2} S (-1 + i^2) + \frac{1}{2} S (2 + 2 e i + i^2)}}$ $((-1+c^2)\pi\beta^2(1+c\beta)(s-\Delta 2)(s-\Delta 2)) +$ $x (1 + c\beta) (s (1 - 2c\beta - \beta^2 + 2c^2\beta^2) + (-1 + 2c\beta - \beta^2) \Delta 2)$ PolyLog[2, $\frac{-\frac{1}{2}S\left(\frac{1}{2}S\left(\frac{1}{2}S\left(\frac{1}{2}S\left(\frac{1}{2}S\right)\right)^{2}\right)+\frac{1}{2}S\left(\frac{1}{2}S\left(\frac{1}{2}S\right)^{2}\right)}{\frac{1}{2}S\left(\frac{1}{2}S\left(\frac{1}{2}S\right)^{2}\right)+\frac{1}{2}S\left(\frac{1}{2}S\left(\frac{1}{2}S\right)^{2}\right)}+\sqrt{1+\frac{S\left(\frac{1}{2}S\left(\frac{1}{2}S\right)^{2}\right)}{22}}$ 1+ /1+ = (-1/2) $(2(-1+c^2) \pi \beta^2(-1+c\beta)(s-\Delta 2))$ α (1+c β) (s (1-2c β - β^2 +2c² β^2) + (-1+2c β - β^2) δ 2) $-\frac{\frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{$ $(2(-1+c^2)\pi\beta^2(-1+c\beta)(s-\Delta 2))$ α (-1+c β) (s (1+2c β - β ²+2c² β ²) - (1+2c β + β ²) Δ 2) PolyLog[2, $\frac{-\frac{1-5(-1+0^2)+\frac{5}{2}+5(1+2+5)+0^2}{-\frac{1}{2}+5(-1+0^2)+\frac{1}{2}+5(1+2+5)+0^2} + \sqrt{1+\frac{5(-1+0^2)}{-2}}$ $-1/(2(-1+c^2)\pi \theta^2(1+c^3)(s-(2)))$ $\alpha (-1 + c\beta) (s (1 + 2c\beta - \beta^2 + 2c^2\beta^2) - (1 + 2c\beta + \beta^2) \Delta 2$ $\frac{b_{R}(-1+i^{2})+b_{R}(1+2\pi i(+i^{2}))}{-b_{R}(-1+i^{2})+b_{R}(1+2\pi i(+i^{2}))} + \sqrt{1 + \frac{n(-1+i^{2})}{i^{2}}}$ -1+ 1+ *(-1-1)/2 $\left| \left| \left(2 \left(-1 + c^2 \right) \pi \beta^2 \left(1 + c \beta \right) \left(s - \Delta 2 \right) \right) \right| \right| \right|$ $\frac{\frac{1}{2} s \left(-1 + d^{2}\right) + \frac{1}{2} s \left(1 + 2 c d + d^{2}\right)}{-\frac{1}{2} s \left(-1 + d^{2}\right) + \frac{1}{2} s \left(1 + 2 c d + d^{2}\right)} + \sqrt{1 + \frac{s \left(-1 + d^{2}\right)}{d2}}$ α (1 + c β) (s (1 - 2 c β - β^2 + 2 c² β^2) + (-1 + 2 c β - β^2) $\triangle 2$) PolyLog [2, $\frac{s(-1+\beta^2)}{\left(1 - \frac{(-\frac{1}{2}+a(-1)+2s(-b(-\beta^2)+\frac{1}{2}+a(-1+\beta^2))^2}{(-\frac{1}{2}+a(-1+\beta^2)+a(-1+\beta^2)+a(-1+\beta^2)}\right)} d2$] $(2 \{-1+c^2\} \pi \beta^2 (-1+c\beta) (s-\Delta 2)) =$ α (-1+c β) (s (1+2c β - β^2 +2c² β^2) - (1+2c β + β^2) δ 2) $\operatorname{PolyLog}[2, \frac{s(-2+\beta^2)}{\left(1 - \frac{(\frac{1}{2} + (-2+\beta^2) + \frac{1}{2} + (1+2+\beta+\beta^2))^2}{(-\frac{1}{2} + (-1+\beta^2) + \frac{1}{2} + (1+2+\beta+\beta^2))^2} + \frac{s(-2+\beta^2)}{(-2}\right) \delta 2}\right]$ $(2(-1+c^2) \pi \beta^2 (1+c\beta) (s-\Delta 2))$ $c \alpha (1 + \beta^2) \operatorname{PolyLog}[2, \frac{5 + 5 \sqrt{\beta^2} - (2 - \sqrt{1 + 5 \lfloor \frac{1}{\beta} \rfloor^2} + 2}{\sqrt{1 + 5 \lfloor \frac{1}{\beta} \rfloor^2} + 2}]$ (-1+c²) πβ² STRONG2020 Virtual Workshop

Calculations σ Roman 0 Ψ P

FormFactor parametrization

Analytical calculation was done with constant BW parametrization: (off mass shell effect in FF was out of scope)

$$F_{i}(q^{2}) = \frac{\Lambda_{i}^{2}}{\Lambda_{i}^{2} - q^{2}}, \Lambda^{2} = M^{2} - i M \Gamma$$

$$F_{j}(q^{2})$$

Full GS function was re-parametrized by sum of constant BW:

$$F(s) = \sum \alpha_i \frac{\Lambda_i^2}{\Lambda_i^2 - s}$$

3 BW gives ~ 5% precision

24 November 2021

Virtual + soft corrections

 $d\sigma/d\theta = d\sigma^{Born}/d\theta * (1 + \delta^{PL}_{odd}(s, \theta) + \delta^{vFF}(s, \theta))$ δ_{odd}(at θ=1 rad) pe 0.08 virt pointlike δvFF correction -0.005 δvFF single BW 0.02 soft+virt pointlike pion(without log() term) -0.01 x5 virt pointlike δvFF correction -0.02 -0.015δvFF single BW 500 1000 2000 2500 1500 300 0 √s. MeV with PDG M, G -0.02 45 **GS** form 40E х9 sum of BW 35E -0.025 single $\left|\frac{\Lambda^2}{\Lambda^2-S}\right|^2$ 400 600 800 1000 1200 1400 30 with PDG M.J s, MeV 25E 20 Red line - with sum of BW, 15 for comparison (black, grey) with single BW: result stable at p-peak 10

Enhancement of virtual correction by x5-10 factor!

STRONG2020 Virtual Workshop

700

800

900 1000 1100

12 Vs, MeV

300

400

500

600

24 November 2021

Asymmetry

After plugging δvFF in MCGPJ generator

24 November 2021

Asymmetry

After plugging δvFF in MCGPJ generator

24 November 2021

Final angle spectra

Still some disagreement in $dN/d\theta$ between data and prediction at level ~ 0.1%: 1) Bhabha generator or Asym. in 2π 2) detector inefficiencies 3) $N_{\pi\pi}$ / N_{ee}

But already it allow to fit angle spectra with released $N_{\pi\pi}$ / N_{ee} , Asym parameters. For sum of 350-410 MeV points Event separation <u>by momentums</u>:

	$N_{\pi\pi} / N_{ee} =$		1.0187 +- 0.00028
by energies in LXe	$\Delta N_{\pi\pi} / N_{ee}$	=	+0.05 +- 0.033%
from theta with free δA:		=	-0.23 +- 0.12%
with fixed δA =0:		=	+0.20 +- 0.08%

We have 3 fully independent methods for $N_{\pi\pi}$ /N_{ee} determination, they are consistent at ~ 0.2% 24 November 2021

How it can affect pion form factor measurements?

Usually event selections in analyses are charge/angle symmetric

Main effect at lowest order comes from: Interference of box vs born diagrams

=> only charge-odd contribution effect is integrated out in full cross-section

Interference of ISR & box vs FSR (or v.v.) => charge-even

ISR measurements

24 November

Virtual Workshop

sQED assumption

Model assumptions

Henryk Czyz the Muon g-2 Theory Initiative Worksop 2019

H. Czyż

Radiative corrections in PHOKHARA and EKHARA MC generators,

12

STRONG2020 Virtual Workshop

18

ISR measurements

Complete NLO: KLOE-large

KLOE-2010 with tag photon measurement can be affected

24 November 2021

Complete NLO: KLOE-small

Complete NLO: BaBar

Summary

It seen ~1% disagreement in the asymmetry between 2π CMD3 data vs prediction based on sQED assumption

Proper account of the Form Factor in the box diagrams gives x5-10 enhancement of them.

It can gives sizeable effect both in charge-odd and in some cases in the charge-even parts of radiative corrections.

Inclusion of double FF in box diagram describe well seen effect in the 2π Asymmetry with CMD3 data at the current precision.

backups

24 November 2021

STRONG2020 Virtual Workshop

21

Generators MCGPJ/Phokhara

22

24 November 2021

Generators MCGPJ/BabaYaga@NLO

Для µ+µ- интегральная асимметрия совпадает между MCGPJ/BabaYaga@NLO с абс. точностью ~0.05% (5% относительная точность)

ВаbaYaga@NLO моделирует фотоны рекурсивно У нас только один фотон на большой угол Поведение BabaYaga около q2~1 более физично Скорее всего это отличие дает эффект в систематику разделения по Р из-за разницы генераторов 24 November 2021

Asymmetry with q2

