Exclusive measurement of hadronic channels between 2 and 3 GeV from BESIII

Xiaorong Zhou (on behalf of BESIII Collaboration) University of Science and Technology of China

STRONG2020 Workshop "Spacelike and Timelike determination of Muon g-2" online, November 24-26, 2021

BEPCII/BESIII: a τ-charm factory

$\mathrm{E}_{\mathrm{cm}}=2.0-4.6 \mathrm{GeV}(2.0-4.95 \mathrm{GeV}$ since 2019)
Energy spread: $\Delta E \approx 5 \times 10^{-4}$
Peak lumi. @ $3.77 \mathrm{GeV}: 1.0 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ $\sim 30 \mathrm{fb}^{-1}$ integrated luminosity collected Wishlist comprises about $40 \mathrm{fb}^{-1}$ (including $20 \mathrm{fb}^{-1}$ on $\left.\psi(3770)\right) \underline{\text { CPC } 44,040001(2020)}$

Electromagnetic

Calorimeter
$\mathrm{CsI}(\mathrm{Tl}): \mathrm{L}=28 \mathrm{~cm}$
Barrel $\sigma_{E}=2.5 \%$
Endcap $\sigma_{E}=5.0 \%$

Main Drift Chamber

Small cell, 43 layer
$\sigma_{x y}=130 \mu \mathrm{~m}$
dE/dx $\sim 6 \%$
$\sigma_{p} / p=0.5 \%$ at 1 GeV

Time Of Flight

Plastic scintillator σ_{T} (barrel): 80 ps σ_{T} (endcap): 110 ps (update to 65 ps with MRPC)

Topics to be presented

$\mathbf{R}\left(\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}\right) \approx 2.25$ in $\sqrt{s}=\mathbf{2 . 0 - 3 . 0} \mathrm{GeV}$

Data set: >650 pb $^{-1}$ collected

-Baryon Form Factor

- $e^{+} e^{-} \rightarrow p \bar{p}$
- $e^{+} e^{-} \rightarrow n \bar{n}$
- $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$
- $e^{+} e^{-} \rightarrow \Sigma \bar{\Sigma}$
- $e^{+} e^{-} \rightarrow \bar{\Xi}$
\square Light Flavor Mesons
- $e^{+} e^{-} \rightarrow \phi \eta, \phi \eta^{\prime}$
- $e^{+} e^{-} \rightarrow K \bar{K}$
- $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \pi^{0}$
- $e^{+} e^{-} \rightarrow \omega \pi^{0}, \eta^{\prime} \pi^{+} \pi^{-}$

Baryon form factor

Electromagnetic Form Factors

\square Fundamental properties of the baryon
$>$ Connected to charge, magnetization distribution
$>$ Crucial testing ground for models of the baryon internal structure

$>$ The Born cross section for $e^{+} e^{-} \rightarrow B \bar{B}$ (one-photon-exchange):

$$
\sigma_{B \bar{B}}(q)=\frac{4 \pi \alpha^{2} c \beta}{3 q^{2}}\left[\left|G_{M}(q)\right|^{2}+\frac{1}{2 \tau}\left|G_{E}(q)\right|^{2}\right]
$$

Coulomb factor: Charged: $C=\frac{\pi \alpha}{\beta} \frac{1}{1-\exp \left(-\frac{\pi \alpha}{\beta}\right)}$, Neutral: $C=1$

Proton Form Factors

SA-ISR: PRD 99, 092002 (2019) LA-ISR: PLB 817, 136328 (2021)
\square ISR method with detected photon and undetected using $7.5 \mathrm{fb}^{-1}$ data with $\sqrt{s} \geq 3.773 \mathrm{GeV}$.

$>$ From threshold to $\mathrm{q}^{2}=4.0 \mathrm{GeV}^{2}$, average cross section 840 pb
$>\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ measured, consistent with BaBar

Proton Form Factors

PRL 124, 042001 (2020)
PRD 91, 112004 (2015)
$>$ Scan technique from 2.0 to 3.08 GeV , using $688.5 \mathrm{pb}^{-1}$ integrated luminosity.
$>\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|,\left|\mathrm{G}_{\mathrm{M}}\right|$ are determined with high accuracy, comparable to data in SL.
$>\left|\mathrm{G}_{\mathrm{E}}\right|$ is measured for the first time.

Neutron Form Factors

Nat. Phys. 17, 1200-1204 (2021)
$>$ High luminosity 18 data sets at center-of-mass energies between 2.0 and $3.08 \mathrm{GeV}, 647.9 \mathrm{pb}^{-1}$
$>$ Pure neutral channel $e^{+} e^{-} \rightarrow n \bar{n}$, only EMC and/or TOF information
$>$ Sophisticated background suppression: $e^{+} e^{-} \rightarrow \gamma \gamma$, beam-associated

Neutron Form Factors

Nat. Phys. 17, 1200-1204 (2021)
$>$ Discrepancy observed with FENICE results: the photon-neutron coupling smaller than photon-proton coupling.
$>$ Oscillation of FF observed in residual form factor lineshape, same frequency, but orthogonal phase

Cross section of $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$

$$
\begin{aligned}
& \Lambda \bar{\Lambda}: P R D ~ 97,032013 \text { (2018) } \\
& \text { KKKK :PRD 100, } 032009 \text { (2019) }
\end{aligned}
$$

-Cross section of $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ measured from threshold to 3.08 GeV \square The anomalous behavior differing from the pQCD prediction at threshold is observed.

$>$ A hint for resonance around $\Lambda \bar{\Lambda}$ threshold in $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{K} \boldsymbol{K} \boldsymbol{K} \boldsymbol{K}$ cross section

- Mass=2232 $\pm 3.5 \mathrm{MeV}$, width $<20 \mathrm{MeV}$

Cross sections of $e^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\Sigma} \bar{\Sigma}$

$$
\begin{aligned}
& \Sigma^{ \pm} \bar{\Sigma}^{\mp}: \text { PLB 814, } 136110 \text { (2021) } \\
& \Sigma^{0} \bar{\Sigma}^{0}: \text { arXiv:2110.04510 }
\end{aligned}
$$

\square Born cross sections of $e^{+} e^{-} \rightarrow \Sigma^{+} \bar{\Sigma}^{-}, \Sigma^{-} \bar{\Sigma}^{+}, \Sigma^{0} \bar{\Sigma}^{0}$ are measured from threshold to 3.02 GeV
\square The cross sections can be well described by pQCD-motivated functions

$$
\sigma^{\mathrm{B}}(s)=\frac{\beta C}{s}\left(1+\frac{2 m_{B}^{2}}{s}\right) \frac{c_{0}}{\left(s-c_{1}\right)^{4}\left(\pi^{2}+\ln ^{2}\left(s / \Lambda_{\mathrm{QCD}}^{2}\right)\right)^{2}}
$$

\square An asymmetry in cross sections/FFs is observed for Σ isospin triplets

Cross sections of $e^{+} e^{-} \rightarrow \Sigma \bar{\Sigma}$

$$
\begin{aligned}
& \Xi^{0} \bar{\Xi}^{0}: P L B .820,136557 \text { (2021) } \\
& \Xi^{-} \bar{\Xi}^{+}: P R D 103,012005(2021)
\end{aligned}
$$

$>$ Born cross sections of $e^{+} e^{-} \rightarrow \Xi^{0} \bar{\Xi}^{0}$ and $\Xi^{-} \bar{\Xi}^{+}$are measured from threshold to 3.08 GeV
$>$ No obvious threshold enhancement observed.
$>$ The ratio of Born cross sections for both modes agrees with the expectation of isospin symmetry.

Light flavor mesons

Light vector mesons around 2.0 GeV

\square Experimental information of $\phi(2170)$
$>$ Limited decay modes
> Inconsistence on Mass \& Width
\square Theoretical explain of $\phi(2170)$
$>s \bar{s} g$ hybrid
$>2^{3} D_{1}$ or $3^{3} S_{1} s \bar{s}$
> Tetraquark
$>$ Molecular state $\Lambda \bar{\Lambda}$
> ...

- Rich vector resonances around 2.0 GeV for excited ρ^{*}, ω^{*}, but are controversial

PDG2021

$\phi(2170)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	seen
Γ_{2}	$\phi \eta$	
Γ_{3}	$\phi \pi \pi$	seen
Γ_{4}	$\phi f_{0}(980)$	
Γ_{5}	$K^{+} K^{-} \pi^{+} \pi^{-}$	seen
Γ_{6}	$K^{+} K^{-} f_{0}(980) \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$	
Γ_{7}	$K^{+} K^{-} \pi^{0} \pi^{0}$	seen
Γ_{8}	$K^{+} K^{-} f_{0}(980) \rightarrow K^{+} K^{-} \pi^{0} \pi^{0}$	not seen
Γ_{9}	$K^{* 0} K^{ \pm} \pi^{\mp}$	not seen
Γ_{10}	$K^{*}(892)^{0} \bar{K}^{*}(892)^{0}$	

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \phi \eta^{\prime}$ and $\phi \eta$

$\phi \eta^{\prime}$:PRD 102, 012008 (2019)

$M=2177.5 \pm 4.8 \pm 19.5 \mathrm{MeV} / c^{2}$

$$
\Gamma=149.0 \pm 15.6 \pm 8.9 \mathrm{MeV}
$$

$$
\mathcal{B}_{\phi \eta^{\prime}} \Gamma_{e e}=7.1 \pm 0.7 \pm 0.7 \mathrm{eV}
$$

$\square 1^{--}$resonances observed in $\phi \eta$ and $\phi \eta^{\prime}$
$>$ Rich $s \bar{s}$ component, ω^{*} OZI suppressed
$>$ Partial width in $\phi \eta$ is much smaller than $\phi \eta^{\prime}$

$e^{+} e^{-} \rightarrow K \bar{K}$

$$
\begin{aligned}
& \mathrm{M}=2239.2 \pm 7.1 \pm 11.3 \mathrm{MeV} / \mathbf{c}^{2} \\
& \Gamma=139.8 \pm 12.3 \pm 20.6 \mathrm{MeV}
\end{aligned}
$$

$K^{+} K^{-}$: PRD 99, 032001 (2019)
$K_{S} K_{L}:$ arXiv:2105.13597

$$
\begin{aligned}
& \mathrm{M}=2273.7 \pm 5.7 \pm 19.3 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=86 \pm 44 \pm 51 \mathrm{MeV}
\end{aligned}
$$

$\mathbf{1}^{--}$resonance observed in $K^{+} K^{-}$and $K_{S} K_{L}$ lineshapes: $>$ PDG average of $\phi(2170): \mathrm{M}=2159 \pm 17 \mathrm{MeV} / c^{2}, \Gamma=137 \pm 16$ $>$ Interpreted as isoscalar : $\omega^{*}, \phi(2170)$ or isovector : $\rho(2150)$

$e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \pi^{0}$

PRL 124, 012001 (2020)

$>$ PWA for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{0} \pi^{0}$ at multiple energy points

channel	$e^{+} e^{-} \rightarrow K_{1}^{+}(1400) K^{-}$		$e^{+} e^{-} \rightarrow K^{+}(1460) K^{-}$	$e^{+} e^{-} \rightarrow K$	(1270) K^{-}	$e^{+} e^{-} \rightarrow K^{*+} K^{*-}$
Mass ($\mathrm{MeV} / \mathrm{c}^{2}$)	2126.5 ± 16.8					
Width (MeV)	106.9 ± 32.1					
	Solution 1	Solution2		Solution	Solution2	
$\mathcal{B}_{R} \Gamma^{e^{+} e^{-}}(\mathrm{eV})$	7.6 ± 3.7	152.6 ± 14.2	1.0 ± 1.3	4.7 ± 3.3	98.8 ± 7.8	0.04 ± 0.2
$\phi(\mathrm{rad})$	3.7 ± 0.4	4.5 ± 0.3	5.6 ± 1.5	4.0 ± 0.2	4.5 ± 0.1	5.8 ± 1.9
Significance(σ)	4.8		4.5	1.4		1.2

Cross section lineshapes for intermediate states => essential input to clarify the nature of $\phi(2170)$

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \omega \pi^{0}$ and $\eta^{\prime} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

$\omega \pi^{0}$: PLB 813, 136059 (2021)
$\eta^{\prime} \pi^{+} \pi^{-}$: PRD 103, 072007 (2021)

$$
\begin{gathered}
M=2111 \pm 43 \pm 25 \mathrm{MeV} / c^{2} \\
\Gamma=135 \pm 34 \pm 30 \mathrm{MeV} \\
\mathcal{B}_{\eta^{\prime} \pi^{+} \pi^{-} \Gamma_{e e}=0.64 \pm 0.49 \pm 0.42}^{\text {or } 23.3 \pm 5.3 \pm 3.3 \mathrm{eV}}
\end{gathered}
$$

$>$ Resonances in $\omega \pi^{0}$ and $\eta^{\prime} \pi^{+} \pi^{-}$lineshapes
$>$ Could be excited ρ mesons: $\rho(2000)$ or $\rho(2150)$

Summary and Prospect

\square Fruitful physics results of exclusive hadronic channels in $\sqrt{s}=2.0$ to 3.0 GeV at BESIII
$>$ SU(3) octet baryon: cross section near threshold, electromagnetic form factor
$>$ Light flavor vectors: improved knowledge for $\phi(2170)$, hints of ρ^{*}, ω^{*} states
\square More results are expected
$>$ Production of SU(3) decuplet baryons
$>$ Properties of excited vector states with PWA
$>20 \mathrm{fb}^{-1} \psi(3770)$ to be collected: exclusive hadronic studies with ISR approach

Thank you!

