LHCb computing activity and 2022/2023 requests

0

Stefano Perazzini INFN Bologna

Riunione referaggio calcolo – 9 Settembre 2021

Outline

- Usage of resources in 2020/2021
- News and current activity
- Reassessment of requests for 2022
- Look to projections for 2023 and 2024

Summary of computing activity in 2020/2021

- As usual CPU consumption has been dominated by MC productions
- Full reprocessing + stripping of particular dataset during 2020
 - 2015 proton collisions, in January 2020
 - 2016 proton collisions, in February 2020
 - 2017 proton-Neon (beam-gas) collisions, in April 2020
 - 2018 Pb-Pb collisions, in May 2020
 - 2018 Pb-Ar collisions, in June 2020

Require data staging from tape

- New restripping campaigns of p-p Run2 collisions during 2021
- Nevertheless users' jobs represent a non-negligible fraction of total activity
 - Complemented by centralised productions running users' code

Summary of computing activity in 2020/2021

- As usual CP
- Full reproce
 - 2015 proton col
 - 2016 proton col
 - 2017 proton-Ne
 - 2018 Pb-Pb coll
 - 2018 Pb-Ar coll
- New restrip
- Nevertheles
 Complement

CPU usage

- About 90% of CPU power is used for MCSimulation
- About 25% of CPU power used comes from HLTFarm
 - Not available during 2022

WLCG T0/T1 accounting for 2020

LHCb-PUB-2021-003

	Used	Pledge
<power></power>	(kHS06)	(kHS06)
CH-CERN	136.0	98
DE-KIT	68.1	54.8
ES-PIC	17.6	13.1
FR-CCIN2P3	46.5	47.2
IT-INFN-CNAF	64.8	55.8
NL-T1	42.3	26.2
RRC-KI-T1	23.5	16.4
UK-T1-RAL	89.0	81.3
Total	487.8	392.8

WLCG T2 accounting for 2020

	Used	Pledge
<power></power>	(kHS06)	(kHS06)
China	9.1	18.0
Brazil	2.0	1.0
France	48.4	30.1
Germany	12.9	10.6
Israel	0.4	0
Italy	9.9	31.5
Poland	2.6	7.4
Romania	6.6	6.9
Russia	14.9	18.2
Spain	6.5	7.0
Switzerland	37.5	32.0
UK	98.1	31.6
US (*)	14.0	12.0
Total	262.8	206.3

LHCb-PUB-2021-003

 NOTE: most of CPU provided by Italian T2s is actually accounted in T1 (LHCb-T2 is at CNAF)

Italian CPU resources

- According to WLCG, sum of INFN-T1 + Italy-T2 is slightly below pledge (~10-15%)
 - Problems in finding proper settings after migration to HTCondor
 - Operational problems from LHCb
 - Misconfigurations in LHCbDirac settings
 - Delay in installation of new resources

- About 90% of CPU provided by Italian sites comes from CNAF
 - Only site pledging resources for LHCb

Situation at CNAF in 2021 so far

- Since April 2021 CNAF(T1+T2) provides an average of about 117 kHS06
 - Just slightly below pledged for April2021 agreed last year (~120 kHS06)
 - Nominal partition of used resources is 77 kHS06 fot T1 and 43 kHS06 for T2
- As approved last year, in autumn CNAF should reach about 152 kHS06 with the installation of SJ resources

Job efficiency

- Very good usage of CPU
 - CPU inefficiencies concentrated in jobs with large I/O
 - \rightarrow small fraction of total CPU
 - Excellent performance from CNAF

Job success rate

- Very high success rate
 - Almost 97% of CPU time is used by successful jobs
- Most of failed jobs are "stalled"
 - Killed by batch system because out of queue limits
 - Wrong determination of time needed for completion
- About 30% of failed jobs are users' jobs → users' errors

Tape usage 2020

- During 2020
 - Archived 2.9 PB of old MC productions and RDST from reprocessing campaigns
- Total 74.6 PB on tape (31st December 2020)
 - 38.4 PB (RAW) + 13.7 PB (RDST) + 22.5 PB (ARCHIVE)
 - Lower than pledge \rightarrow in part recovered during first part of 2021
- Total of 10.7 PB of tape at CNAF → 19% of Tier1s (for LHCb policy should be 24%)
 - 3.4 PB (RAW) + 2.6 PB (RDST) + 4.7 PB(ARCHIVE)

2020	CPU	Disk	Tape
2020	(kHS06)	(PB)	(PB)
Tier 0	98	17.2	36.1
Tier 1	295	31.7	56.0
Tier 2	206	4.3	
Total WLCG	599	53.2	92.1
Non WLCG	20		

LHCb Pledges for 2020

LHCb-PUB-2021-003

Tape usage 2021 so far

- RAW and RDST are stable
 - No data taking and no reprocessing
- Steady increase for ARCHIVE
 - Additional 1.2 PB during first half of 2021 and about a factor 3 by the end of the year to clean space for Run1+Run2 incremental strippings
- Start exploiting some tape resources in Poland (NCBJ) for archival
 - Just a "pilot test" (about 50 TB for now) but discussion is ongoing to increase this quota and have a substantial pledge of tape resources in the coming years (not yet rubber stamped)

Disk usage T0+T1 in 2020

Disk (PB)	CERN	Tier1s	CNAF	GRIDKA	IN2P3 (*)	PIC	RAL	RRCKI	SARA
LHCb accounting	7.91	22.62	4.65	3.87	3.35	1.25	5.61	1.88	2.01
WSSA disk used	8.03	23.56	4.69	3.88	3.36	1.25	6.46	1.89	2.03
WSSA disk free	0.37	7.53	1.81	1.35	1.44	0.09	1.91	0.46	0.48
WSSA tape buffer (used+free) ³	(**)	2.65	2.30	0.15	0.03	0.05	(**)	0.09	0.03
WSSA total ⁴	8.40	33.75	8.80	5.38	4.83	1.39	8.37	2.44	2.54
Pledge '20	17.2	31.7	6.87	5.55	4.65	1.33	8.37	2.30	2.645

****: CERN and RAL do not publish buffer information**

LHCb-PUB-2021-003

- About 8 PB of disk free at the end of 2020
 - Partially filled with data reprocessing at beginning of 2021
 - Still to come new data from incremental stripping campaigns of Run1+Run2
 - Underusage of disk resources mainly driven by delay in LHC schedule

Disk usage T0+T1 in 2021

- Steady increase of MC samples
 - Despite archival of old MC productions
- Increase of data size due to stripping campaigns
 - PbPb and fixed target data processed beginning of 2020
 - Incremental stripping of Run1+Run2 just started
 - Note that up to 4 PB of buffer is needed to restrip one year of data taking
- CNAF provides its fair share of about 15% of Tier1 (should be 19% according to LHCb policy)

4.9%

Generated on 2021-08-27 09:40:49 UT

Disk usage at T2-D

- Since few years several T2s also pledge disk resources
 - Very useful additional resources
 - Similar behaviour of disk usage as for T1s

Data popularity

- Optimisation of datasets present on disk
 - Analysis allows to "optimise" number of replicas for unpopular datasets
 - General increase in old dataset usage during the last year due to legacy analyses going on
 - Archiving additional copies of all unused dataset in the last year we can expect to gain up to 1.1 PB
- No major news since last year:
 - Automatic preparation of weekly reports to be consulted by the Data Managers
 - Automatic removal of "cold" data not yet implemented but in the pipeline

Fast MC productions

- Extensive usage of different flavour of FastMC continued in 2020/2021
 - Not viable solution for all analyses
 - More than ~85% of MC events produced in the last year are from some FastMC
- Simulated events are filtered to save disk
 - Start of production for Run3 trigger optimisation requires unfiltered samples

Year	Simulated events (10 ⁹)	Stored events (10 ⁹)	Ratio	CPU work kHS06.y	CPU per event kHS06.s	LFS TB
2017	10.3	4.2	40.3%	817	2.50	640
2018	12.0	3.0	25.3%	1009	2.65	550
2019	45.0	6.9	15.2%	1290	0.90	1110
2020	53.0	16.8	31.7%	1357	0.81	2010

Distribution of Simulation Type over all events currently request

Estimate on distribution of CPU time to produce the events currently requested

Ultrafast MC productions

 Development of a fully-parametric simulation framework LAMARR continues

- With respect to last year several improvements and additions
 - Much better particle propagator, tracking simulation and inclusion of particleID
 - All based on GANs → would benefit from dedicated GPU resources meant for training
- Important contributions from Italian community (L. Anderlini, B. G. Siddi)

HPC resources

- Work continue to exploit other resources and in particular HPC centres
- Aftern nice experience with MarconiA2, started to investigate the usage of Marconi100 cluster CINECA
 - − Not suitable for production jobs → LHCb software relies on LCG dependencies not available for PowerPC
 - GPUs constitute the real power of the cluster → Very interesting for NNet training and users' applications
 - Major LHCbDirac version released during the summer allowing to submit to the cluster
 - Several use cases prepared to start the testing phase (Padova, Firenze, Cagliari, Milano)

MarconiA2@CINECA

- As part of PRACE Project Access Grant together with the other LHC experiments
- KNL farm: 68-processor Xeon-Phi ٠

١

- Up to 4x hyper-threading, 96 GB DDR4 RAM
- Resurrection and development of MP/MT application for LHCb simulation (Gaussino) ٠
 - Code is now validated and working _
 - Vary important to validate MP/MT LHCb simulation to be put in production soon

Summary slides from Tommaso Boccali

The endgame....

- The end of the grant was delayed several times (delay in the Galileo100 procurement)
- Final date: Feb 28th 2021!
- 93 MCoreH used out of 30

Total used is 93459347 hours out of 30M, which is 311 % It is distributed like:

- 119 %
- ALICE: 9 %
- LHCb : 56 %

12

Requests for 2022

- Some history
 - Requests for 2021 were still based on the assumption of 2021 being a year with "physics"
 - Requests where split in two parts:
 - April2021 → minimal resources considering no data taking in 2021
 - Autumn2021 → deploy resources as originally planned (sort of anticipation for 2022)
- In light of the new schedule of LHC requests for 2022 have been reviewed (<u>LHCb-PUB-2021-002</u>)
 - Assuming operations will start on 1st Feb. 2022
 - Total of 6x10⁶ s (pp collisions) + 1.2x10⁶ s (ion collisions)
 - Total integrated luminosity of 10 fb⁻¹ (integrated luminosity in Run2 was 2 fb⁻¹ per year)

Requests for 2022 (CPU)

LHCb-PUB-2021-002

CPU Work in WLCG year (kHS06.years)	2021	2022 LHCB-PUB- 2020-005	2022 THIS DOCUMENT
First pass sprucing	70	160	80
End-of-year sprucing	70	160	80
Simulation	760	870	870
Core and distributed computing infrastructure	10	10	10
User Analysis and working group productions	260	335	220
Total Work (kHS06.years)	1170	1535	1260
LHCb-TDR-018 (2021 pledge)	860 (934)	1580	1580

- An improvement of a factor 2 in the performances of sprucing is assumed
 - Porting improvements from HLT algorithms to offline software
 - Same gain expected for user analysis algorithms
- No resources for reconstruction of ion collisions is requested
 - In case HLT farm will not be able to do that online, resources will be asked for 2023₂₂

Requests for 2022 (Disk) LHCb-PUB-2021-002

Disk storage usage forecast (PB)		2021	20 LHCb- 2020	22 •PUB- •005	20 This do	22 cument
	Run1+Run2 pp data		170		10.2	
	Run1+Run2 PbPb + SMOG		17.9		10.2	
	Run3: FULL		13.7		13.7	
Real data	Run3: TURBO	37.8	30.3	73.7	30.3	65.9
	Run3: TURCAL	3.7		3.7		
	Run3: Minimum bias		2.4		2.4	
	Run3: PbPb + SMOG2		5.6		5.6	
Simulated	Run1+Run2 Simulated Data	10.0	8.7	10.0	8.7	10.0
data	Run3 simulated data	10.0	2.2	10.9	2.2	10.0
Othor	User data	15.0	8.5		1.8	12.0
Buffers		15.9	19.7	28.2	11.0	12.8
Total		63.7		112.7		89.6
LHCb-TDR-018 (2021 pledge)		66.0 (58.7)		111.0		111.0

- Optimisation of Run1+Run2 number of copies
- Reassessment of user data given centralisation of user jobs management
- Reassessment of buffer needed for end-of-the-year reprocessing requiring a 2-weeks contingency

Requests for 2022 (Tape) LHCb-PUB-2021-002

Tape storag	Tape storage usage forecast (PB)		20	22
Dura 1	RAW data (pp+HI+fixed target)		38.4	
Run1 +	RDST data (pp+HI+fixed target)	81.1	13.7	82.1
Runz	ARCHIVE		30.0	
	pp data (FULL+TURBO+TURCAL)		120.1	
Dun 2	minimum bias / no-bias Heavy Ion Data + fixed target 38.6		0.6	127.0
Kun3			5.6	137.8
	ARCHIVE (data+MC)		11.5	
Total		119.7		219.9
LHCb-TDR-018 (2021 pledge)		142.0 (108.7)		243.0

- No change with respect to previous estimation
 - Tape is the most critical resource in the next years

Requests for 2022 (BW to/from tape)

LHCb-PUB-2021-002

Country	Site	Tape Read	Tape Write
		BW (GB/s)	BW (GB/s)
CERN		4.24	5.50
	Tier1 si	tes	
France	CC-IN2P3	0.49	0.63
Germany	GridKA	0.86	1.12
Italy	CNAF	0.86	1.12
Netherlands	SARA/NIKHEF	0.34	0.44
Russia	RRCKI	0.34	0.44
Spain	PIC	0.23	0.29
UK	RAL	1.13	1.46
TOTAL Tier1	sites	4.24	5.50

Table 3-4: minimum required read and write bandwidths to the tape systems at CERN and Tier1 sites. A disk buffer corresponding to at least two weeks must be provided as well for data staging.

- Tape writing will have to sustain the 10 GB/s of data coming from HLT farm
- Tape reading is evaluated assuming end-of-year reprocessing to finish in ~2 months
- Buffer disk must provide a contingency of at least two weeks

Summary of requests for 2022

 Reassessment of 2022 requests has been scrutinised and approved by C-RSG (CERN-RRB-2021-023)

LHCb			2022				
		Request	2022 req. /2021 C-RSG	C-RSG recomm.			
	Tier-0	189	108%	189			
	Tier-1	622	108%	622			
CDU	Tier-2	345	107%	345			
CPU	HLT	50	100%	50			
	Total	1206	108%	1206			
	Others	50					
	Tier-0	26.5	141%	26.5			
Dick	Tier-1	52.9	141%	52.9			
DISK	Tier-2	10.2	140%	10.2			
	Total	89.6	141%	89.6			
	Tier-0	81	185%	81.0			
Таре	Tier-1	139	183%	139.0			
	Total	220	184%	220.0			

- In the red boxes the sum of resources that all T1s and T2s of the experiment will have to provide in 2022 for the proper working of LHCb
- To obtain INFN share total numbers must be multiplied by INFN share

Computation of INFN share

- By LHCb policy share should be computed in the following way
 - — CPU and Disk: fraction of PhD Eq. of the country without CERN at the denominator → 18.8% per INFN
 - Tape: fraction of PhD Eq. with only country with T1s at the denominator → 26.7% per INFN
- In the next slides all numbers are computed assuming fair share → 16.6 % including CERN at the denominator
 - CPU: separated requests between Tier1 and Tier2
 - Disk: sum of T1+T2 share assigned to T1
 - Tape: only to T1

CERIN-RRB-2021-047

2022	PhD eq. total/ funding auth.	0⁄0
AUSTRALIA	2	0.4
BRAZIL	19	3.4
COLOMBIA	2	0.4
FRANCE	43	7.6
BMBF GERMANY	29	5.1
MPG, GERMANY	2	0.4
HUNGARY		
IRELAND	1	0.2
INFN ITALY	94	16.6
NETHERLANDS	25	4.4
P. R. CHINA	37	6.5
POLAND	24	4.2
HHNIPNE ROMANIA	5	0.9
RUSSIA	56	9.9
SPAIN	20	3.5
SWITZERLAND	26	4.6
UKRAINE	2	0.4
UK	83	14.6
USA	29	5.1
CERN	68	12.0
TOTAL	567	100.0

INFN resources for 2022

- LHCb-T1:
 - CPU: Total T1s multiplied by INFN share
 - → 622 x 0.166 = 103 kHS06
 - − Disk ^(*): Total T1s+T2s multiplied by INFN share
 → (52.9+10.2) x 0.166 = 10.5 PB
 - − Tape: Total T1s multiplied by INFN share
 → 139 x 0.166 = 23 PB
- LHCb-T2:
 - CPU: Total T2s multiplied by INFN share

→ 345 x 0.166 = 57.3 kHS06

LHCb		2022					
		Request	2022 req. /2021 C-RSG	C-RSG recomm.			
	Tier-0	189	108%	189			
	Tier-1	622	108%	622			
CDU	Tier-2	345	107%	345			
CPU	HLT	50	100%	50			
	Total	1206	108%	1206			
	Others	50					
	Tier-0	26.5	141%	26.5			
Dick	Tier-1	52.9	141%	52.9			
DISK	Tier-2	10.2	140%	10.2			
	Total	89.6	141%	89.6			
	Tier-0	81	185%	81.0			
Таре	Tier-1	139	183%	139.0			
	Total	220	184%	220.0			

Currently installed resources

- Officially installed resources are declared on <u>WLCG-CRIC</u>
- Currently declared resources are the sum of 2021 scrutiny plus SJ unlocked in May
- N.B.: Currently declared resources are not those actually intalled

f	Site Topology - Pledges -	Accounting - Downtime	- Admin -	Logs -		Help	- DLogin
🗞 🗹 Export	🔒 🛛 🖓 Filter 🔁 Reload	▼ Columns 8/21 13	Pledge View	Federatio	ns list	٤	Show 100 🗸 entries
INFN	filter by Accounting name	filter by Tier	filter by Co	filter by Typ	filter by DISK Q2 2021 L	filter by CPU Q2 2021 Lł	filter by TAPE Q2 2021 L
Federation 1	Accounting name	Tier ↓↑	Country 1	Type ↓↑	DISK Q2 2021 LHCb	CPU Q2 2021 LHCb	TAPE Q2 2021 LHCb
T-INFN-CNAF	INFN-T1	1	Italy	Official	7633	97580	13362
IT-INFN-T2	INFN T2 Federation	2	Italy	Official	0	54569	0
Federation	Accounting name	Tier	Country	Туре	DISK Q2 2021 LHCb	CPU Q2 2021 LHCb	TAPE Q2 2021 LHCb

Showing 1 to 2 of 2 entries

Previous 1 Next

Summary of INFN resources for 2022

Variations computed according to declared resources

LHCb T1	2021 Pledge (Scrutiny 2021 + SJ)	2022 (∆ 2021)
CPU (HS06)	97580	103118 (+5538)
Disk (TB)	7633	10461 (+2828)
Tape (TB)	13362	23044 (+9682)
LHCb T2	2021 Pledge (Scrutiny 2021 + SJ)	2022 (∆ 2021)
CPU (HS06)	54569	57196 (+2627)

- Considerations on fair share
 - Using fair share instead of LHCb policy there is a shortage of resources of about: CPU
 ~ -22 kHS06, Disk ~ -1.4 PB, Tape ~ -14 PB
- 14 PB of tape corresponds to ~25 kHS06 of CPU (250 k€)

Costs 2022

Simple multiplication by unitary costs

CPU = 10 €/HS06, Disk = 120 €/TB, Tape = 18 €/TB

LHCb T1	2021 Pledge (Scrutiny 2021 + SJ)	2022 (∆ 2021)	Costi
CPU (HS06)	97580	103118 (+5538)	55.4 kEuro
Disk (TB)	7633	10461 (+2828)	339 kEuro
Tape (TB)	13362	23044 (+9682)	174 kEuro
LHCb T2	2021 Pledge (Scrutiny 2021 + SJ)	2022 (∆ 2021)	
CPU (HS06)	54569	57196 (+2627)	26.3 kEuro
		Тс	otal: 595 kEu

Note: replacements for dismissed resources are not taken into account in these numbers 31

Risk assessment

	t				LHCb Ri	sk Register			
offe			Ris	k		_			
	ante	Risk	Likelihood Imp	act Severity	Owner	Effect	Mitigation		
	d ifice	Funding							
lem	bac	Tape shortage at CERN	2	4 8	CERN	Cannot store data coming from HLT. Descoping	Decrease HLT throughput to offline by migrating		
rob	too th s	Tape shortage at Tier1 sites	3	4 12	Tier1 sites	of physics program	more lines from FULL to TURBO and/or tightening		
do	1ot t wi	I I I I I I I I I I I I I I I I I I I				Cannot analyse (part of) data taken. Impact on	Park data on cold storage and activate if when		
it, n	bu bu	•				operations load and complexity, system	feasible. Decide what to store on disk based on		
ith	le b red,	Disk shortage	3	3 9	WLCG sites	resiliency. Delay in physics program	popularity.		
al v	ass nag					Nore time to get adequate simulation samples.	increase fraction of fact and naromatric simulations		
de	a h ma	Shortage of computing neuror	2	2 6		analysis model.	Increase fraction of fast and parametric simulations.		
t: can	t of be is		5	2 0	All sites				
ve ve	a bi can cris	operations / recimology			, 	Cannot store data coming from HIT. Descening			
<u>∎</u> ÷	÷. φ. γ.	Availability of tapa write bandwidth	2	۸ o	CERN + Tior1 sitos	of physics program	Decrease HIT tribuighput Prioritize physics program		
			2	4 0	CERN + Herr sites	Cannot recall data for end-of-year re-sprucing	Decrease field throughput. Phontize physics program		
		TAvailability of tape read bandwidth	2	4 8	CERN + Tier1 sites	Delay of physics analysis	Delay re-sprucing to EYETS or LS3		
			-			Resprucing slowed-down and extending into	Delay re-sprucing or get space by temporarily		
	Vie	Underestimation of disk buffer	3	3 9	WLCG	data taking period	removing other datasets		
Ц	nlike	Software							
add	y u					More computing power needed. YETS re-	recover computing power by delaying simulation		
o he	ver en	Underestimation of sprucing work	2	2 4	LHCb	sprucing is delayed	production		
d tc	but oen app					delay in (re-)sprucing campaigns. Buffer space is			
cte	en Idei V hi	Availability of sprucing application	2	3 6	LHCb	not sufficient	park unspruced data on tape. Delay YETS re-sprucing		
d:	app ell h abl						recover computing power by delaying simulation		
00 9. e	d hé d w rob	Underestimation of analysis work	2	2 4	LHCb	more computing power needed	production		
eve	ouh ouh ill F						find optimization point by studying interplay		
Liki 1: n	4: C	I .				Cannot afford sufficient simulation; physics	between full/fast/parametric simulation and		
		Underestimation of simulation work	3	3 9	LHCb/G4/HSF	analysis suffers	technological developments in each ofthem		

Outlook until LS3

		DISK				
		PB	Increase	A	verage	
2021	LS2	59				
2022		88	1	.5		
2023	Run3	122	1	.4		
2024		165	1	.4		1.4
2025		169	1	0		
2026	LS3	173	1	.0		
2027		177	1	.0		1.2
			TADE			
			IALE			
		РВ	Increase		Average	
2021	LS2	PB 108.7	Increase	0	Average	
2021 2022	LS2	PB 108.7 222	Increase	0 2.0	Average	
2021 2022 2023	LS2 Run3	PB 108.7 222 367	Increase	0 2.0 1.7	Average	
2021 2022 2023 2024	LS2 Run3	PB 108.7 222 367 489	Increase	0 2.0 1.7 1.3	Average	1.7
2021 2022 2023 2024 2025	LS2 Run3	PB 108.7 222 367 489 495	Increase	2.0 1.7 1.3	Average	1.7
2021 2022 2023 2024 2025 2026	LS2 Run3 LS3	PB 108.7 222 367 489 495 498	Increase	2.0 1.7 1.3 1.0	Average	1.7
2021 2022 2023 2024 2025 2026 2026 2027	LS2 Run3 LS3	PB 108.7 222 367 489 495 498 501	Increase	2.0 1.7 1.3 1.0 1.0	Average	1.7

		CPU				
		kHS06	Increase	è	Average	
2021	LS2	933		0		
2022		1246		1.3		
2023	Run3	2097		1.7		
2024		3133		1.5		1.4
2025		3392		1.1	•	
2026	LS3	3392		1.0		
2027		2901		0.9		1.2

Conclusions

- Good and efficient usage of computing resources by LHCb in 2020 and 2021 so far
- Italian resources are provided in a very efficient way and are well used
 - General underpledge of T1 impact for about 10-15% of CPU power provided by INFN to the collaboration → shortage will increase if further delay in CPU installation
- Work is ongoing to address most problematic points of LHCb computing model
- Delay in LHC schedule due to Covid-19 made necessary a reassessment of resource needs for 2022
 - Reduction of requests is based on some assumption on the capability to improve performances and efficiency of the computing model
- The likelihood and impact of potential resource shortages have been assessed
 - shortage of storage resources, in particular tape, is at high risk and will impact physics programme → need some extra resources
- Hunger for resources will not stop in 2022