
Sardinia site studies 
and characterization
Hands on session

Matteo Di Giovanni



INTRODUCTION

The aim of this hands on session is to present the 
softwares and libraries used so far for Sardinia site 
characterization.
All the procedures shown in this session are those used for 
the recent SRL publication about Sos Enattos.
The aim of the shared jupyter notebooks and Python 
scripts is to give the possibility to replicate the results and 
improve the procedures.



INTRODUCTION
You can download the shared folder with scripts and 
notebooks from Google Drive by scanning the following 
QR code:



TIPS FOR INSTALLATION
When installing new versions of Python or new modules, my 
advice is not to mess with your native Python installation but 
to use Anaconda instead.

Anaconda is a virtual environment (venvs) package 
manager that lets you create venvs with any available 
Python verion.

For downloads and tutorials: www.anaconda.com

http://www.anaconda.com


TIPS FOR INSTALLATION

When you create a Python venv, my advice is to not use 
the latest Python version available (3.9) but to stick to older 
releases like 3.7 or 3.8

Python modules may not be up to date with the most 
recent version and can create conflicts.



TIPS FOR INSTALLATION
Install the ever-present Python modules:

• numpy
• scipy
• matplotlib

plus:
• obspy
• netCDF4
• xarray
• basemap
• motuclient

If you use Anaconda, it is enough to type conda install module_name 
in your venv.
Anaconda delivers 99% of available Python modules.
To simplify things, follow the installation instructions for ObsPy at https://
github.com/obspy/obspy/wiki

https://github.com/obspy/obspy/wiki
https://github.com/obspy/obspy/wiki
https://github.com/obspy/obspy/wiki
https://github.com/obspy/obspy/wiki


TIPS FOR INSTALLATION
Since some of the provided scripts are Python notebooks, 
be sure to have Jupyter installed on your computer (https://
jupyter.org/install).

Using iPykernel you can add as many kernels as you want 
to your Jupyter notebooks, including Anaconda kernels.

python -m ipykernel install --name venv_name

https://jupyter.org/install
https://jupyter.org/install
https://jupyter.org/install
https://jupyter.org/install


ObsPy
Obspy is a convenient Python module to read, save and 
manipulate seismic data. It provides lots of useful built-in 
functions that help facilitate the analysis of seismic data.

>conda config --add channels conda-forge 
>conda create -n obspy python=3.7 
> conda activate obspy 
(obspy)> conda install obspy 

Check the success of the installation by running Python in the venv 
and importing the obspy module.



Reading and saving data with 
ObsPy
• Obspy is compatible with the most common 

seismic data file formats 
(.sac, .sgy, .mseed…);
• The notebook 
read_and_save_with_obspy.ipynb 
provides examples of the various ways in 
which you can read and save seismic data.



Reading and saving data with 
ObsPy
• Obspy can read data from local and remote 

locations;
• Keep in mind that, on local directories, Obspy 

can read data using different procedures:
‣ read(file_name) function;
‣ SDS protocol;



Use of the read function

• Useful for small data chunks;
• Saves all the data (traces, times, ecc…) in a 

stream object.



SDS protocol

• Basic level of standardization and portability to 
softwares that need direct access to data files;
• Given data from a seismic station from a given 

year and characterized by the codes 
NETWORK, STATION, LOCATION, 
CHANNEL,the basic directory and file layouts 
are defined as:

PATH_TO_SDS/Year/NETWORK/STATION/CHANNEL.TYPE/NETWORK.STATION.LOCATION.CHANNEL.TYPE.YEAR.DAY



Stream object
Streams are list-like objects which contain multiple Trace 
objects, i.e. gap-less continuous time series and related header/
meta information.

Each Trace object has an attribute called data pointing to a 
NumPy ndarray of the actual time series and the attribute stats 
which contains all meta information in a dictionary-like Stats 
object. Both attributes starttime and endtime of the Stats object 
are UTCDateTime objects.

https://docs.obspy.org/packages/autogen/obspy.core.stream.Stream.html#obspy.core.stream.Stream
https://docs.obspy.org/packages/autogen/obspy.core.trace.Trace.html#obspy.core.trace.Trace
https://docs.obspy.org/packages/autogen/obspy.core.trace.Trace.html#obspy.core.trace.Trace
http://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.obspy.org/packages/autogen/obspy.core.trace.Stats.html#obspy.core.trace.Stats
https://docs.obspy.org/packages/autogen/obspy.core.trace.Stats.html#obspy.core.trace.Stats
https://docs.obspy.org/packages/autogen/obspy.core.utcdatetime.UTCDateTime.html#obspy.core.utcdatetime.UTCDateTime


Read files from remote 
servers
ObsPy makes use of the IRIS FDSN webservice to access 
publicly available seismic data.

The user must know the IRIS client name of the data provider 
(e.g. INGV), the network (e.g. IV) and station name (e.g. SENA).

To print all available IRIS clients, type the following:

from obspy.clients.fdsn.header import URL_MAPPINGS 

for key in sorted(URL_MAPPINGS.keys()): 
   print("{0:<11} {1}".format(key,  URL_MAPPINGS[key]))



Inventory files
Raw seismic data must be deconvoluted with the station’s 
instrument response. This is done with the use of inventory files 
(often called dataless files) saved in various formats (.xml, .see, 
etc…).

inventory = read_inventory(file_name.xml) 

inv = client.get_stations(network=net, station=sta, 
location=loc, channel=cha, level="response") 

stream.remove_response(inv = inventory, response = ‘ACC’)



Hands-on material
See the notebook 
read_and_save_with_obspy.ip
ynb for examples on how to read 
and save data with ObsPy

Use the notebook 
create_inventory_file.ipynb 
to create your own inventory



Spectra
Spectra can be calculated in many different ways using an 
almost infinite variety of functions. I focused on two methods 
for the analysis:

• ObsPy PPSD function;
• SciPy fft/spectrogram functions

VS.



ObsPy PPSD
Based on the procedure by McNamara et al. [2004]. Saves 
and plots PSD histograms.
Also the spectra from the single time segments are saved with 
their time stamps.
The procedure divides the frequency range into octaves and 
the in each octave and average is done. This heavily 
smoothes the spectra.
So far I calculated spectra on 1 hr segments with a 50% 
overlap.



ObsPy PPSD
Using ObsPy, makes very easy also the calculation of the 
spectra’s time series:
extract_psd_values(period=T) 



ObsPy PPSD
Pros:

• easy to use method (little coding required);
• saves all relevant quantities;
• easy read/save;
• calculation of time series and spectrograms straightforward;

Cons:
• not flexible (closed function);
• spectra smoothed too much (miss all spectral lines), can get only a general 

understanding of noise levels;



SciPy functions

Do I need complex spectra?


YES NO 

scipy.fft.fft 
scipy.fft.rfft scipy.spectrogram 

Read data with ObsPy (convert Stream and Trace objects in arrays)




SciPy functions

SciPy
 ObsPy


Compared against ObsPy, the spectra are more full of information




SciPy functions
scipy.fft.fft 
scipy.fft.rfft 

scipy.spectrogram 

Pros:

• flexible method;

• reasonably efficient;

• outputs two-sided complex spectra.

Cons:

• Requires more coding;

• calculation of time series cumbersome.

Pros:

• handles the division of the data into segments;

• outputs spectrograms;

Cons:

• Real spectra only;

• requires more coding;

• calculation of time series cumbersome.



Things to do with spectra
• Spectral ratios (surface underground):
‣ calculated with ObsPy’s spectra;
‣ 1 hour long segments, 50% overlap;
‣ calculated only on spectra segments at same times;
‣ output the mean and percentiles.

• H/V ratio:
‣ calculated using procedures used in literature (get raw 

spectra, apply konno-omachi smoothing, make ratios, output 
mean and percentiles),



Hands-on material
See the attached notebook and 
python script for calculating the 
spectral ratios and the H/V ratio.



Downloading sea wave data
Copernicus is an open data service provided by EU and 
covers a wide variety of environmental variables including 
sea data (Copernicus Marine Service).

• get a free account on Copernicus;
• go to https://resources.marine.copernicus.eu/products



Downloading sea wave data
Select “Mediterranean Sea Waves Analysis and Forecast”



Go to “Data Select” and choose the following data access 
method. 

You will be prompted to an interface with all the download 
options. The relevant variable is VHM0.

Downloading sea wave data



Alternatively, you can download the motuclient module 
to download the data through command line interface on 
your local machine:
python -m motuclient --motu http://nrt.cmems-du.eu/motu-web/
Motu --service-id MEDSEA_ANALYSISFORECAST_WAV_006_017-TDS --
product-id med-hcmr-wav-an-fc-h --longitude-min 0 --longitude-
max 17 --latitude-min 35 --latitude-max 45 --date-min "2021-1-1 
00:00:00" --date-max "2021-3-31 23:00:00" --variable VMDR_WW --
out-dir="output_directory" --out-name="name_of_file.nc" --user 
your_user --pwd your_password

Downloading sea wave data



Downloading sea wave data



Downloading sea wave data


