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Active noilse cancellation

e NN: 1t cannot be physically shielded
e We can perform an active noise cancellation

e Linear filter: Wiener filter (optimal filter)

Sensor array Wiener Filter

ewtonian
oilse (NN)




Limited by P and S waves
mixing:

Only P waves Mixed: P and S

Correlation of the seismometer
in the origin with all the other
points in a homogeneous and
isotropic field.

Remember:

B8 P = compressional waves
(always generate NN)

B S = shear waves (usually don’t
generate NN)

Because of their
different propagation wvelocity in the ground, P and S waves
produce two—-point correlations
that are out of phase, thus affecting the configuration of 5
the optimal array.



Let’s go back to the optimization for
the Newtonian noise:

Isotropic and
homogeneous
seismic field
for underground
detectors.

All the 100
optimizations

For arrays with
N = 6
seismometers
each.
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Underground
case: we need
to consider
all the 3
directions of
the seismic
displacement:



= DEch3_min
DEchl_min
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What 1f the seismic field 1s not
homogeneous and i1sotropic?




What 1f the seilismic field 1s not
homogeneous and i1sotropic?

Xop— X
(h(r1)2 + |1y —rg|?)3/2

Can(F,to) = C / Cas(F, 1)

dr1

In the end, we only need to
know this (and we can have it
from data)




Every point of C__(x ,y. ,%x,,y,)1n the 4D space 1s
calculated as before -» We can virtually sample as many
values of C__(x ,y,,%X,,¥,) as we want, wherever we want.
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C.(x,¥,,%,y,) = <(FFT"{s(x_,y,) (#)} FFT{s(x,,y,) (a)})>

ith

seismometer’s data stream (1 hour, for example)

N segments with
50% overlapping

—
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BGaussian 1.50

Process 1.05
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CSS (xllyllleyZ) = <(FFT*{s(x1’yl) (w)

)

FFT{s(x,,y,) (0) })>
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Which are the best
hyper—-parameters?

Hyper—-parameters: they are external to the model and cannot be estimated
from the data (like the learning rate for neural networks). However,
they can be optimized in 2 ways:

Fully Bayesian framework:
= = Maximizing the log-likelihood:
- non—-gaussian likelihood or
- rely on Monte Carlo
methods (computationally
expensive)

Optimization + matrix
inversion

Gaussian Processes are non-parametric models.
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Which are the best
hyper—-parameters?

Hyper—-parameters: they are external to the model and cannot be estimated
from the data (like the learning rate for neural networks). However,
they can be optimized in 2 ways:

We need seismic simulations for

Fully Bayesian framework: this!!!
- non—gaussian likelihood =

- rely on Monte Carlo See TOmlSlaV
methods (computationally '

more details
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summary

Newtonian noise (NN) affects the low frequency band of GW
detectors

We can reduce it with an active noise cancellation

If the site is noisy we will need up to a factor 10 of NN
reduction

For a factor 10 we will need up to 15 sensors for each TM - €€€

It will be dificult/expensive collecting seismic data for the
array optimization in ET - we have to rely also on seismic
simulations as prior knowledge for Gaussian Process!
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Thank you for your
attention!!!
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Single f: 10 Hz
Single f: 15 Hz
Single f: 20 Hz
Broadband: 10 Hz
Broadband: 15 Hz
Broadband: 20 Hz
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Predicted function

Thunderbird Mail

Predicted std

20
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Frequency | O Va
10 Hz 1.33-10~2 1/+/Hz | 4.04.10=2% 1/+/Hz
15Hz | 7.21-107241/vHz | 1.04-10~2 1/VHz
20Hz | 4.34-107241/vHz [ 44410722 1/VHz |

Estimated
Newtonian Noise

—— without Recess (WETM)
with Recess (WETM)

Ayatri Singha, Stefan Hild, and Jan Harms. \Newtonian-
noise reassessment for the Virgo gravitational-wave
observatory including local recess structures". In:
Classical and Quantum Gravity 37.10 (Apr. 2020), p.
105007.

doi: .url:



Array

optimization

Wiener filter to perform a NN
cancellation (time domain) :

P—1
%(m) = Y w y(m — k
k=0

R(w)
++ Wiener filter performances

SHCSS CS”

Cﬂﬂ

(frequency domain) : ‘+‘
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What 1f the seilsmic field 1s not
homogeneous and 1sotropic?

Residual in
frequency R(w) = 1 —
domain Cnn

CSH-(W) — E[S;{{(w)n(w)] We can use a model (next slide)
/

Cnn(f..d) N E[n*(w)n(w)] We treat it just as a unknown constant

CSSB;(W) = E[S:{(W)Sj(w)] cTizii:zliS easy: we Jjust need to collect )



Regular grid

Regular grid

Regular grid

{5 00 25 50 75

-100 -75 5.0 -25 00 25 50 75

1) FFT of 37 seismometers’ data (seismic displacement) -
2D gaussian process at a frequency f : Convolution theorem -

surrogate model of Css:

C.(x,¥,%,y,) = <(FFT*{s(x_,y,) ()} FFT{s(x,,y,) (a)})>

2) Css Sampling - 4D Linear Interpolation on a Regular grid (faster)
- Css & Csn (integrated with Simpson method) 24
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Which are the best
hyper—-parameters?

they define the model and can be learned from the data
coeficients of a linear model or the weights in a neural network).

Parameters: (e.qg.

Hyper—-parameters: they are external to the model and cannot be estimatec

from the data (like the learning rate for neural networks). However,
they can be optimized in 2 ways:

Fully Bayesian framework:

Maximizing the log-likelihood:
- non—-gaussian likelihood or L : :
» rely on Monte Carlo Optlm;zatlog + matrix
methods (computationally IS SN0
expensive)

Gaussian Processes are non-parametric models.
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Wliener Filter 1s the way:

Assumptions:
e Stationary signal
« Linear relationship

Filter
order

P—1

X(m))=
PRy

value of the

Newtonian | | Megsured
noise Wiener filter Slgnal
coeficients | (seismic
displacement)

y

Discrete time
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The residual will depend on the frequency, the number of sensors
and on their positions:
In 2D we have 2N coordinates, where N is the number of the
sensors.

Array optimization

)

Array deployment

}

Subtraction pipeline
(applying wiener filter)

28

Update Wiener filter every
hours: LINK


https://iopscience.iop.org/article/10.1088/1361-6382/ab5c43/meta
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chl: o = 0.07A
ch3:0=0.01A
ch3: 0= 0.07A

B chl:o=0.01A
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predicted f(x)

2

I
=

Free nolise signal

——————— GP estimated function
e data
—— true function

Posterior obtained from
the conditioning of the
prior over the white
data point. The white
dashed curve represents
p* (x ) and the shaded

area *20 (X)) .

The hyper—-parameters
were fixed: q;ﬂ, 1=0,

0€=O.
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Noisy signal

predicted f(x)
o

GP estimated function with noise
data
—— true function

X O

Posterior obtained from
the conditioning of the
prior over the white
data point. The white
dashed curve represents
p, (x ) and the shaded

area *20_(x)).
The hyper—-parameters

were fixed: o=1, 1=0 and
0.=0.4
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Likelihood: given some parameters, the higer it is, the more likely it
will be that we sample that observed data.

1

log p(y|X0) £ —5¥ " (k(Xo.Xo) + 2Z) ~'y){ 5log |k(xo.Xo) + oL

2

Minus complexity

penalty: N=number
The simpler the Qf.
model (big 1 scale) tralining
the bigger it points
becomes

Likelihood: try to favour the least complex model able to explain the

data (automatic Occam Razor) . -
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