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Newtonian 
noise

before the 
subtraction 
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Newtonian 
noise

after the 
subtraction 
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Wiener Filter

Newtonian 
Noise (NN) 
cancellation

Sensor array 

Active noise cancellation

● NN: it cannot be physically shielded

● We can perform an active noise cancellation

● Linear filter: Wiener filter (optimal filter)
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Limited by P and S waves 
mixing:

Correlation of the seismometer 
in the origin with all the other 
points in a homogeneous and 
isotropic field.

Remember: 
P = compressional waves    
    (always generate NN)
S = shear waves (usually don’t   
    generate NN) 

Only P waves Mixed: P and S

Because of their
different propagation velocity in the ground, P and S waves 

produce two-point correlations
that are out of phase, thus affecting the configuration of 

the optimal array.
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Let’s go back to the optimization for 
the Newtonian noise:

Isotropic and 
homogeneous 
seismic field 

for underground 
detectors.

All the 100 
optimizations 

For arrays with 
N = 6 

seismometers 
each. y

x

z

Underground 
case: we need 
to consider 
all the 3 
directions of 
the seismic 
displacement:
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The more, the better:



Factor 10

Factor 3 
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What if the seismic field is not 
homogeneous and isotropic?
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What if the seismic field is not 
homogeneous and isotropic?

In the end, we only need to 
know this (and we can have it 

from data)
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Every point of Css(x1,y1,x2,y2)in the 4D space is 
calculated as before → We can virtually sample as many 
values of Css(x1,y1,x2,y2) as we want, wherever we want.

Virtual Sampling + 
Linear interpolation:
we created a surrogate 
model of Css(x1,y1,x2,y2)

Css(x1,y1,x2,y2)
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Css(x1,y1,x2,y2) = <(FFT*{s(x1,y1)(ω)} FFT{s(x2,y2)(ω)})>

ith seismometer’s data stream (1 hour, for example)

FFT1

FFT2

FFTN

FFTN-1

...

N segments with
50% overlapping

Gaussian 
Process
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FFT1

FFT2

FFT3

...

FFTN-1

FFTN

CONVOLUTION THEOREM

Css(x1,y1,x2,y2) = <(FFT*{s(x1,y1)(ω)} FFT{s(x2,y2)(ω)})>
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Which are the best 
hyper-parameters?

Hyper-parameters: they are external to the model and cannot be estimated 
from the data (like the learning rate for neural networks). However, 
they can be optimized in 2 ways:

Gaussian Processes are non-parametric models.

Fully Bayesian framework:

→ non-gaussian likelihood 
→ rely on Monte Carlo 

methods (computationally 
expensive)

Maximizing the log-likelihood:

Optimization + matrix 
inversion 

or
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Which are the best 
hyper-parameters?

Hyper-parameters: they are external to the model and cannot be estimated 
from the data (like the learning rate for neural networks). However, 
they can be optimized in 2 ways:

Gaussian Processes are non-parametric models.

Fully Bayesian framework:

→ non-gaussian likelihood 
→ rely on Monte Carlo 

methods (computationally 
expensive)

Maximizing the log-likelihood:

Optimization + matrix 
inversion 

or See Tomislav 
presentation for 

more details

We need seismic simulations for 
this!!!
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Summary
● Newtonian noise (NN) affects the low frequency band of GW 

detectors

● We can reduce it with an active noise cancellation

● If the site is noisy we will need up to a factor 10 of NN 
reduction 

● For a factor 10 we will need up to 15 sensors for each TM → €€€
€€€€€!!!!!

● It will be difficult/expensive collecting seismic data for the 
array optimization in ET → we have to rely also on seismic 
simulations as prior knowledge for Gaussian Process!
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Thank you for your 
attention!!!
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Wiener filter to perform a NN 
cancellation (time domain):

Wiener filter performances 
(frequency domain):

REMEMBER!!!

Array 
optimization
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We can use a model (next slide)

We treat it just as a unknown constant

This is easy: we just need to collect 
data!

Residual in 
frequency 
domain

What if the seismic field is not 
homogeneous and isotropic?
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1) FFT of 37 seismometers’ data (seismic displacement) → 
2D gaussian process at a frequency f0: Convolution theorem → 
surrogate model of Css:    

Css(x1,y1,x2,y2) = <(FFT*{s(x1,y1)(ω)} FFT{s(x2,y2)(ω)})> 

2)  Css Sampling → 4D Linear Interpolation on a Regular grid (faster) 
   → Css & Csn (integrated with Simpson method)
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Which are the best 
hyper-parameters?

Parameters: they define the model and can be learned from the data (e.g. 
coefficients of a linear model or the weights in a neural network).

Hyper-parameters: they are external to the model and cannot be estimated 
from the data (like the learning rate for neural networks). However, 
they can be optimized in 2 ways:

Gaussian Processes are non-parametric models.

Fully Bayesian framework:

→ non-gaussian likelihood 
→ rely on Monte Carlo 

methods (computationally 
expensive)

Maximizing the log-likelihood:

Optimization + matrix 
inversion 

or
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Wiener Filter is the way:
Assumptions:

● Stationary signal  
● Linear relationship

Estimated 
value of the 
Newtonian 

noise Wiener filter 
coefficients

Measured 
signal 
(seismic 

displacement)

Discrete time

Filter 
order 
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The residual will depend on the frequency, the number of sensors 
and on their positions:

In 2D we have 2N coordinates, where N is the number of the 
sensors.

Array optimization

  Subtraction pipeline
(applying wiener filter)

Array deployment

Update Wiener filter every 
hours: LINK

https://iopscience.iop.org/article/10.1088/1361-6382/ab5c43/meta
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We might misplace the sensors, 
then what…?
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Posterior obtained from 
the conditioning of the 
prior over the white
data point. The white 
dashed curve represents 
µ∗(x∗) and the shaded 
area ±2σ∗(x∗).

The hyper-parameters 
were fixed: σf=1, l=0, 
σ
ε
=0.

Free noise signal
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Posterior obtained from 
the conditioning of the 
prior over the white
data point. The white 
dashed curve represents 
µ∗(x∗) and the shaded 
area ±2σ∗(x∗).

The hyper-parameters 
were fixed: σf=1, l=0 and 
σ
ε
=0.4

Noisy signal
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Likelihood: given some parameters, the higer it is, the more likely it 
will be that we sample that observed data.

Data fit:
It decreases 

monotonically with the 
length scale (l) → less 
flexible model → worse 

fit 

Minus complexity 
penalty:

The simpler the 
model (big l scale) 

the bigger it 
becomes

N=number 
of 

training 
points

Likelihood: try to favour the least complex model able to explain the 
data (automatic Occam Razor). 
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