

E-TEST<u>TEAM</u>

E-TEST in EMR: Hydrogeophysical characterization

Introduction

- Geological structure and hydrogeological behavior important for ET design
- Geoelectric surveys are performed with different target depths
- Combination of
 - 2D ERT profiles
 - 3D Deep ERT surveys
 - Cross-borehole measurements
- Laboratory measurements for calibration of inversion
- Inversion approach is developed to couple petrophysical models to the measured electrical parameters
- Need to account for realistic geological structure and lithology

Cottessen

Survey Cottessen

Hombourg

Survey Hombourg

ERT

SRT

SRT_07_append_correct.vs

Deep ERT

- Gaining information from target depth of ET
 - Corner points
 - Along seismic lines

- Survey design is model dependent
 - Constraints on remote electrode
 - Account geological uncertainty
 - Integrate forward modelling to GemPy

Deep ERT Hombourg - Receiver

Deep ERT Homborug - Injections

Cross-borehole measurement setup

- Sensors in boreholes for improved spatial resolution at depth

- Synthetic studies for optimization of measurement scheme

- Imaging of conduction and polarization properties for improved hydrogeophysical characterization

-50 -100-150z [m] -200 -250-300-350 100 x [m] -0.08 -0.04 0.04 0.08 0 Normalized sensitivity

Data acquisition Remote control PC • • ch1 105 ch1 120 Electrode: \bigtriangledown ch2 400 Separation (100m) 00m) m oles oreho Ď

Fig. Right: Sketch of the planed measurement setup

Geoelectric Frequency -domain IP measurements

- The frequency dependent complex resistivity of relevant rock formations was measured in the laboratory.
- Measurements of porosity and permeability are supplemented with measurements of the inner surface area (BET) and a geochemical characterisation (XRF).

Fig. Above: 3x3 cm probes of Westphalian Sandstone

European Regional Development Euro

Fig. Above: Spectral Indoced Polarization measurement device

Fig. Left: Measured spectrum and characterization of the relaxation behaviour

Preparation for cross-borehole ERT/IP

Development of an inversion approach to extract spectral IP-properties from Time-domain IP field measurements and make a quantification of the textural and hydraulic rock properties possible.

Fig: TDIP measurement with the Syscal

Fig: TD-FD conversion using Debye decomposition (example for known test circuit)

terreg

Euregio Meuse-Rhine

E-TEST in EMR: Active and passive seismic surveys

E-TEST TEAM

Why use seismic investigations & how it is done

- 2D or 3D information on subsurface
 - Rock layering
 - Structures in the subsurface
- Active seismic campaign
 - 2D lines
 - Using vibro-seis trucks
- Passive seismic campaign
 - Battery-driven geophones

Active and passive seismic investigations

- 2D Active seismic survey
 - Lines in high angle to existing geological structures
 - Follow existing infrastructure
- Passive seismic campaigns
 - Clusters of geophones in an area
 - Geophones record for ca. 2 months
 - Use of any passive input signal
 - Earthquakes in the Eifel mountains
 - Traffic, windmills, etc.

2D Seismic Survey – Planned acquisition geometry

- Each line at least 10 km
- Run-off at ends of each line to achieve a halffold at the end
- 2D seismic lines

Status & challenges of active seismic survey

• Status

- Tender is published and currently open
- Permitting phase started
 - Contact with local authorities
 - Check for environmental requirements and UXOs

Challenges

- Meeting requirements in 3 regions
- Potential loss of signal due to strong impedance contrast between Cretaceous soft-rock and Paleozoic hard-rock
- Finding time slot that is in accordance to natural protection of animals

Forecast of active seismic survey

- S2 2021
 - Closing Tender and awarding of tender to successful bidder
- S1 2022
 - Acquiring seismic data by contractor
 - Processing of seismic data by contractor (depends on data acquisition)
- S2 2022
 - Processing of seismic data by contractor (if still required)
 - Data analysis and interpretation of seismic data
 - Integration with further data sets (e.g. boreholes, near-surface geophysics) for data analysis
- S1 2023
 - Reporting

Passive Seismic Campaigns

• Passive sensors placed as clusters in the field to cover different areas

Passive Seismic Campaign during Active Seismic

- Passive sensors placed around active lines
- Gain subsurface information around and in between active seismic lines

Passive Seismic Campaign during drilling

- Passive sensors placed around drill sites (Banholt and Cottessen)
- L-shaped geometry of passive seismic sensors
- Several sensors along a line
- One sensor attached to drill rig to measure signal of drill rig

E-TEST is co-funded by the Regions:

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

E-TEST is also co-funded by the own-fundings of all Partners:

