

E-TEST TEAM

ET - Site Studies and Charcterization Workshop

Nils Chudalla, Marius Waldvogel, Raphael Burchartz, Pooya Hamdi, Florian Wellmann

Geological modeling in E-Test

Goal: Find the optimal position for the Einstein Telescope in the subsurface

- Collect & homogenize available data
- Understand tectonic setting
- Preliminary geological models
- Conduct further geophysical exploration
- Refine geological models
- Simulate and plan tunneling

Model input

Main sources of information:

- Boreholes
- Maps (orientations and surface points)
- Profiles
- Seismic interpretations

Soon to be acquired:

- Additional boreholes
- 2D seismic
- Passive seismic
- Geophysical methods

EMR models

- I: Cretaceous Cover
 - Important dampening layer
 - Unconformity (Future drilling operations)
- II: Paleozoic folds and thrusts
 - Contains target layer for tunneling
 - Fault and fracture characterization

Model: Cretaceous cover

- Status quo:
 - No orientations from outcrops
 - Plenty of boreholes (North)
 - Low resolution seismic
 - Easy geometry
 - Few faults

Model: Cretaceous cover

Model dimensions:

- 23,500 x 28,000 x 800 m
- 80 x 120 x 60 blocks

Model: Cretaceous cover

50 100 150 200 250 300 Thickness [m]

Borehole	Prediction	Measured
Banholt	151 m	130 m
Cottessen	8 m	2 m

Model: Paleozoic folds and thrusts

- Status quo:
 - High data density for orientations
 - Few boreholes
 - High structural variability
 - Profile input is based on one specific geological interpretation

Model: Paleozoic folds and thrusts

Model dimensions:

- 19,000 x 14,000 x 800 m
- 80 x 70 x 30 blocks

Uncertainty modeling

Cretaceous cover

SCAN 2D

Z : 40 m

Boreholes

Z:10 m

Paleozoic folds and thrusts

X, Y : 100 m Z : 25 m

Dip : 10 °

Azimuth : 10 $^{\circ}$

These are only assumptions based, a clear quantification is planned.

all simulated surfaces for Formation 1

(Wellmann & Caumon, 2018)

pseudo - wells

Uncertainty and Shannon cell Entropy

European Regional Development Fund

Uncertainty: Cretaceous cover

EUROPEAN UNION

Euregio Meuse-Rhine

European Regional Development Fund

ST Einstein Telescope EMR Site & Technology

Uncertainty: Paleozoic folds and thrusts

Geological modeling: Challenges & Opportunities

Challenges:

- Quantify error of model input
- Reduce overall uncertainty
- Model different geological interpretations
- Maximize information from available data

Opportunities

- Evaluate model quality and geological interpretations
- Maximize information gain from exploration methods

Online GIS solutions

 $\Delta \Delta$

"Isn't there data somewhere on that topic?"

- Large amounts of data collected and homogenized
- Large amounts of data generated
- Many researchers and (future) ET2SME partners involved
- Public outreach

Online data platform

What is geological data? What should it do?

Data input:

- Boreholes (Points, bar diagrams)
- Geological features, e.g. faults (Polylines)
- Geophyiscal methods, e.g. ERT (Polylines, images)
- Spatial interpolations (Raster images)
- 3D geological models (3D objects)

• ...

Functionality:

- Filter data
- Select data
- Download data
- Locate the right data (Intuitive interface)

Online Geology

Umwelt Atlas Angewandte Geologie

nhalt

leine Inhalte

Geotope

GeoUntertage GeoMuseen Via GeoAlpina

Chu Geologischer Dienst NRW Bayrisches Landesamt für Umwelt

SwissTopo

EST Einstein Telescope

De-Greiff-Straße 195 * D-47803 Krefeld Fon +49 (0) 21 51 89 70 * Fax +49 (0) 21 51 89 75 05

Legende

Schweizerische Eidgenossenschaft

Ort suchen oder Karte hinzufügen:

Q z.B. Bundesplatz 1 Bern, 46.7 7.5, Lärmkarte

Probieren Sie test.map.geo.admin.ch aus Vollbild Problem me

Simplified workflow (How could this work?)

Custom widgets (ArcGIS)

Showcase WebApp

E-TEST is co-funded by the Regions:

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

E-TEST is also co-funded by the own-fundings of all Partners:

Thank you for your attention

SCAN ME

