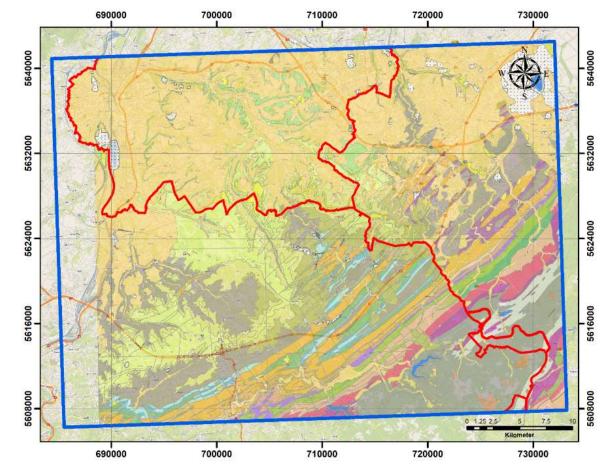
E-TEST – Geological Field Investigations, Drilling Programs and Geophysical Logging

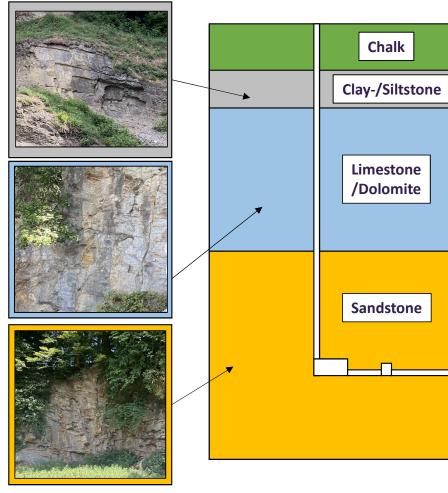
Raphael Burchartz, Marius Waldvogel, Nils Chudalla, Jonathan Zinser, Pooya Hamdi, Florian Amann

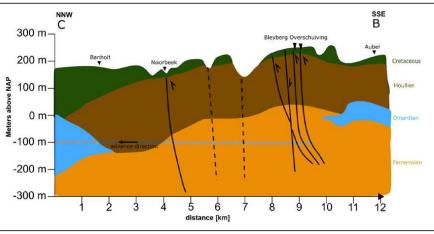
Main Objectives - WP T4

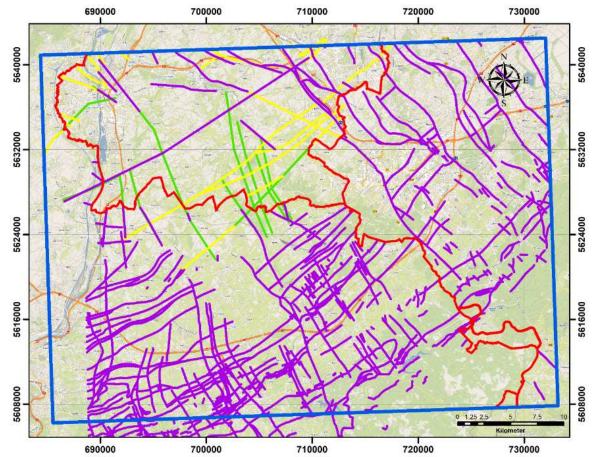

- 3D Cross-Border Open Geological Model
 - Evaluation and incorporation of existing geological data sets
 - Implementation of new boreholes
 - Active and passive seismic survey
- ET-Design
 - Feasibility study and optimal positioning of the ET triangle
 - Extensive multi-disciplinary in-situ and laboratory testing campaign
 - Assessment of regional fracture characteristics by outcrop analogue studies

Rocks in the EMR Region

- Rocks of Paleozoic age
 - Carboniferous (361-300 Mio. years)
 - Upper Devonian (383-361 Mio. years)
- Rocks of Upper Cretaceous age
 - 85-66 Mio. years
- Distribution of rocks varies throughout EMR region
- General information from literature and outcrop studies
- Local subsurface information from drill cores


Geological Assessment of Representative Rocks within ET-Project

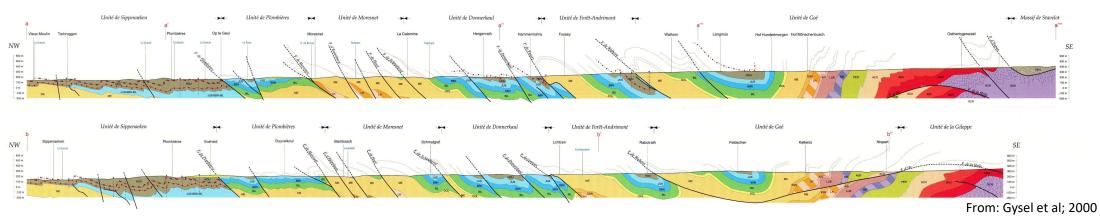

Ideal vs Real Rock Column in the EMR Region



5

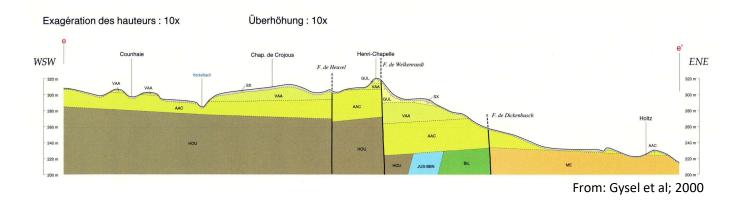
Geological Structures in the EMR Region

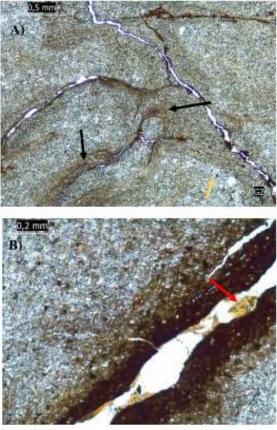
- Structure set A
 - Running NE SW
 - Originate from Late Paleozoic orogeny
 - Affects only Paleozoic rocks
- Structure set B
 - Running NW-SE
 - Origin in Devonian, reactivated several times
 - Affects all rocks
- Information about large-scale structures from literature & maps
- Local information on small-scale features by outcrops & drill-core data



Structure Set A: Running NE-SW

- Folds and thrust faults on large scale
- Fractures on small-scale: Open and closed


- Orientation unfavorable to recent stress field
 - Not active
- Water may circulate in open fracture



Structure Set B: Running NW-SE

- Normal and strike-slip faults on large scale
- Fractures on small-scale: mainly open

- Orientation favorable to recent stress field
 - Active in Lower Rhine Embayment
- Water very likely to circulate in open fracture

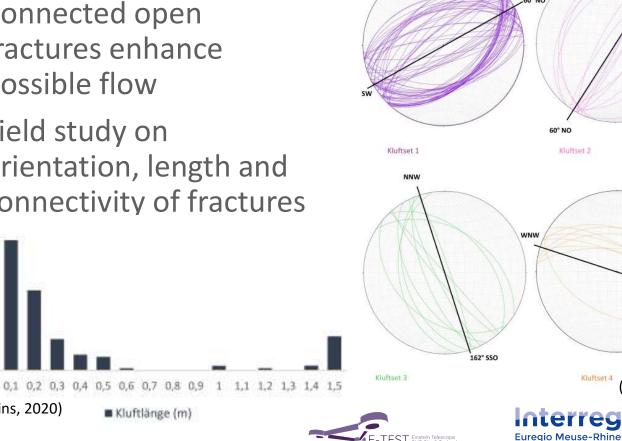
(Queins, 2020)

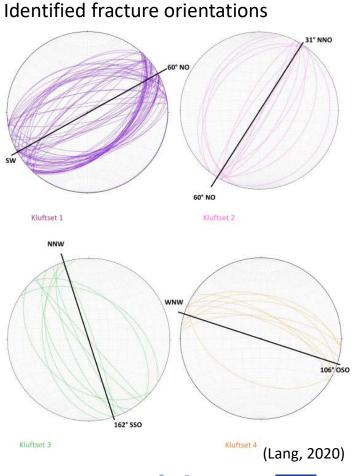
Fractures and Potential for Water Flow

- Water can flow easily along open fractures
- Connected open fractures enhance possible flow

50%

40%


20%


10%

(Queins, 2020)

Häufigkeit (%) 30%

• Field study on orientation, length and connectivity of fractures

Mapping of fracture connections

ш: Y-Knoter

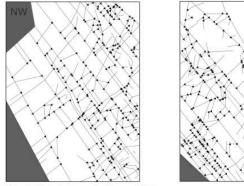
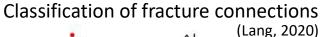
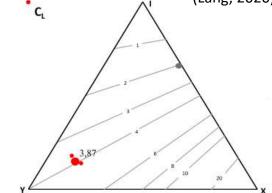
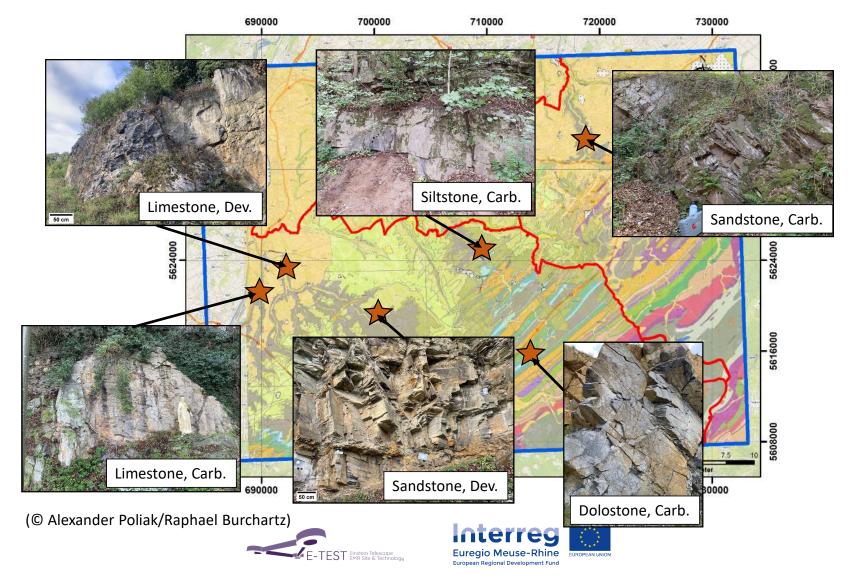




Abbildung 15 Klüfte mit 1 : X-Knoten, 11 : 1-Knoten und 111 : Y-Knoter

(Lang, 2020)

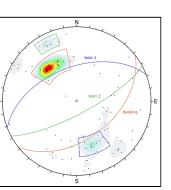
First Step - Surface Investigations

- Surface investigation of outcropping rocks provides
 - a. The possibility to get a first approximating technical data source by in-situ and laboratory testing
 - b. derive possible formations of special interest for further investigation



(© Raphael Burchartz)

Surface Investigations


Surface Investigations

In-situ tests

- Photogrammetry
- Point-load tests
- Scan-line mapping

(© Alexander Poliak/Raphael Burchartz)

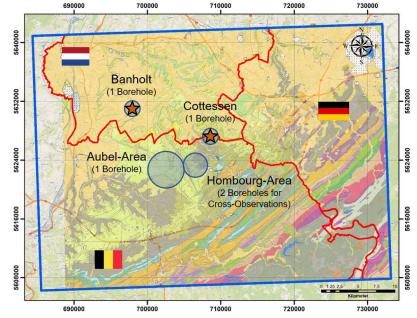
Laboratory tests

- P-wave velocity measurements
- Brazilian Tensile Strength (BTS)
- Uniaxial Compression Strength (UCS)

(© Alexander Poliak/Raphael Burchartz)

Geological Assessment of Representative Rocks within ET-Project

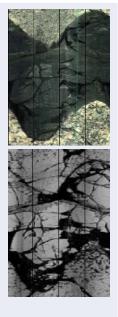
		Density	2.32 g/cm ³		i1
and the second		Porosity	18.7 %	Chalk Density	2.76 g/cm ³
A CONTRACT		E-Modul	23 GPa	Clay-/Siltstone Porosity	3.2 %
		UCS	104 MPa	E-Modul	29 GPa
and a		BTS	9 MPa	Formationen dazu	143 MPa
and an and a second		P-Wave-V.	4309 m/s	Limestone BTS	10 MPa
				/Dolomite P-Wave-V.	4276 m/s
	COP REL				
				Density	2.68 g/cm ³
	K. Adde			Sandstone Porosity	1.6 %
				E-Modul	25 GPa
					107 MPa
Density	2.64 g/cm ³	UCS	119 MPa	BTS	6 MPa
Porosity	4.5 %	BTS	15 MPa	P-Wave-V.	5620 m/s
P-Wave-V.	5160 m/s	E-Modul	25 GPa		


(Zinser, 2021)

Second Step - Drilling Campaigns

- Two currently ongoing drilling campaigns shall give information about the actual rock conditions/properties down to a target depth of 250 m
- Different borehole tests will be performed as well as core logging and mechanical tests on the core material

October 20				2021	Nov-21						December 2021				
	27.09	04.10	11.10	18.10	25.10	01.11	08.11	15.11	22.11	29.11	06.12	13.12	20.12	27.12	03.01
	03.10.	10.10.	17.10.	24.10.	31.10.	07.11.	14.11.	21.11.	28.11.	05.12.	12.12.	19.12.	26.12.	02.01.	09.01.
Drilling Cottessen															
Logging Cottessen															
Hydraulic testing Cottessen															
Drilling Banholt															
Logging Banholt															
Hydraulic testing Banholt															
	Drilling	Possible	time adjustmen	t Logging	Hydraulio	Hydraulic testing/fracturing									



Borehole Geophysics/Logging

Geophysical Borehole Investigations

Hydraulic Testing & Fracturing

Laboratory Tests

- Optical Televiewer Scan
- Acoustic Televiewer Scan
- 3-Component Magnetometer Log
- Natural Gamma Log
- Spectral Gamma Log
- Full-Wave Velocity Log
- Inflow/Outflow measurements
- Formation Resistivity Log

- Pump-/Slug-/Pulse-Tests (~ 5-10 tests/borehole)
- HF/HTPF-Tests + Impression-Packer-Tests (~ 5-10 tests/borehole in 3 boreholes)

Compression Tests • Triaxial Compression

Uniaxial

- Compressior Tests
- Indirect Tensile
 Tests
- Shear Tests
- Cerchar-Test
- P-Wave Velocity Measurement
- Porosity Measurement

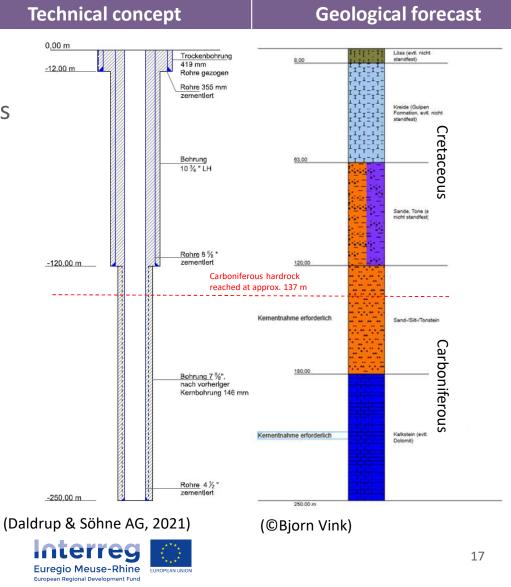
(Zinser, 2021)

Drilling Cottessen

- Started at 4th of October
- Drilling currently at 151 m
- Reached carboniferous hard rock at 2.5 m
- Previous ERT and GPR measurements were executed

(© Jonathan Zinser)

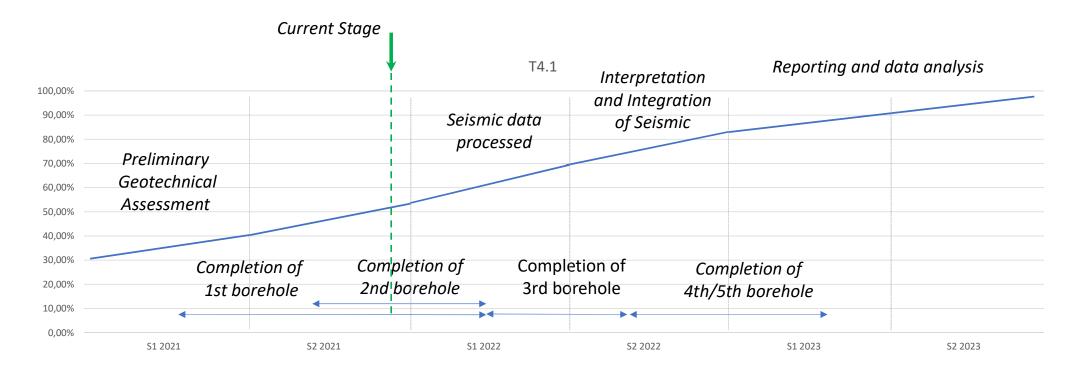
(© Raphael Burchartz)



Drilling Banholt

- Started at 9th of August
- Passed Cretaceous: Karstified lithologies and Sands of Vaals
- Drilling currently at a depth of 137 m

EST Einstein Telescope EMR Site & Technologi


Geological Challenges during Field Work and Drilling

- Complex distribution of rock type in EMR region
 - Prediction of rocks in the subsurface in one specific location is difficult
- Understanding of fracture network is difficult
 - Water circulates in open fractures
- Technical problems during drilling
 - Fluid losses and additional cementation needed
- Access to outcrops
 - Closed borders due to COVID
 - Bringing equipment to outcrops

Preliminary Forecast of T4.1 Cross-border Open Geological Model

E-TEST is co-funded by the Regions:

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

E-TEST is also co-funded by the own-fundings of all Partners:

