

E-TEST TEAM

Hamdi, P., Zinser, J., Ott, J., Wannenmacher, H., Amann, F.,

Overview

- ET Tunnels General Consideration
 - Current Cavern & Tunnel Layouts
 - Caverns, Tunnels and shafts Construction
 - Dewatering Tunnels
 - Surface Installations
 - Environmental Considerations
- EMR Site
 - Boundary Conditions
 - Ongoing works
 - Preliminary Tunnel Design
 - Forecasts

ET Tunnels General Consideration

Rhein-Maas-Region

·

10 km

-3

the states

3

10 km

10 km

Depth: ~200-300m

Source: Einstein gravitational wave telescope - Conceptual Design Study

Main Caverns ("vertex stations") to host the cryogenic infrastructure and laser injection systems

Height of 30 m required for main suspension systems + vacuum envelopes

Source: Einstein gravitational wave telescope - Conceptual Design Study

Satellite Caverns to host input test masses (low & high frequency) and vacuum vessels

- High frequency injection cavern (B)
- *High frequency filter cavity cavern (C)*
- Low frequency interferometer cavern (D)
- High frequency interferometer cavern (E)
- End of filter cavity (F)
- Low Frequency End-Test-Mass (G)
- High Frequency End-Test-Mass (H)

Caven Construction

• All caverns, tunnels and galleries in the vicinity of the access structures are excavated by Drill and Blast

10 km Tunnels

- Internal clearance profile of $Ø_{int} = 6.5 m$ (vacuum lines)
- TBM-O \rightarrow 30 cm of shotcrete
 - more prone to water inflow (local measures possible)
 - Possible post excavation grading
 - $\mathcal{O}_{exc} = 7.3 \text{ m} (\rightarrow 1.3 \text{ mill. } \text{m}^3 \text{ excavated material})$
- TBM-S/DS → 30 cm concrete lining
 - "watertight" lining
 - Bigger deviation range
 - $\mathcal{O}_{exc} = 8.4 \text{ m} (\rightarrow + 400.000 \text{ m}^3 \text{ excavated material})$
- Choice between 2 & 3 parallel working TBMs (cost & time)

Photo Courtesy: Herrenknecht AG

Tunnel with Segmented Lining

Shotcrete Lined Tunnel

Courtecy: Implenia AG

Shafts

- Requirements:
 - Main items for laboratory equipment simplified as pill shaped (5.5 length; Ø 4m)
 - Vacuum pipes (20 m long; Ø 1.4 m)
 - Lowering parts of TBM (\emptyset 12 m \rightarrow without TBM \emptyset 10 m)
- Inclined (10% grade → 2500 m length + safety areas) or vertical (250 m down)
- Decision making on the best practice for the access area depends on environmental, logistical (linking roads), geological/-hydrogeological aspects.

Shafts

- Conventional shaft sinking sources on a cycle of blasting, skip based mucking of the excavation material and immediate lining of the shaft.
- Due to the installation of various guiding rails and transportation pipes and the ventilation system, a prefabricated segmental lining is recommended in favor of a shotcrete lining system.

Surface installations

- Mandatory for Shaft Hoisting and Winding
- Protection of the underground facilities from environmental influences
- Construction surface space requirement:
 - 5000 m² Main offices
 - 2000 m² Small offices
 - 40000 m² Site facilities
 - 3000 m² Water treatment
 - 10000 m² Accommodation
 - 3000 m² Segmental lining storage

Courtecy: Implenia AG

Further considerations

- Ventilation concept for every stage of construction
- Strategy for excavated material (2.6–3.6 Mio. m³), reusability of excavated material for concrete, lining...
- Power demand
- Environmental aspects related to dust, vibrations and noise, groundwater and water usage and reuse
- Minimizing impact using rail-based transport
- Noise control related blasting
- Water treatment plant

Courtesy: https://www.tecnitude.com/

ET Tunnel in "EMR" Region

Boundary Conditions

Boundary Conditions

Geological Conditions

Large Fault Structures

Boundary Conditions

Ambient Noise

Landuse (Natura 2000, Industrial Area etc.)

Ground Behaviour Prediction for ET Tunnel

Ground Behaviour Prediction for ET Tunnel Construction

Forecast – Site Investigation

Forecast – Final Optimization & Tunnel Design

E-TEST is co-funded by the Regions:

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

E-TEST is also co-funded by the own-fundings of all Partners:

