Searching for X17 anomaly at InTOF experiment

Working group (in evolution)

C.Gustavino, Shedding light on X17 boson, Centro Ricerche E. Fermi, 6-8 september 2021, Rome, Italy

X17 ATOMKI Results

A significant anomaly has been recently observed in the emission of electron-positron pairs in the $^{7}Li(p,e^{+}e^{-})^{8}Be$ and $^{3}H(p,e^{+}e^{-})^{4}He$ reactions.

Krasznahorkay, A.J.; et al.:

"Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson". Physical Review Letters. **116** (42501): 042501 (2016).

Krasznahorkay, A.J.; et al.:

"New evidence supporting the existence of the hypothetic X17 particle". <u>arXiv:1910.10459v1 [nucl-ex]</u> (23 October 2019).

Krasznahorkay, A.J.; et al.:

"A new anomaly observed in ⁴He supports the existence of the hypothetical X17 particle". <u>arXiv:2104.10075v1 [nucl-ex]</u> (20 April 2021).

Reaction	M _{X17} ±∆M _{stat} ±∆M _{syst} (MeV)	Statistical evidence
⁷ Li(p,e⁺e⁻) ⁸ Be	16.70±0.35±0,50	>5 sigma
³ H(p,e⁺e⁻)⁴He	16.94±0.12±0.21	>9 sigma

- This anomaly has been interpreted as the signature of a BOSON (hereafter X17) not foreseen in the standard model of particle physics.
- ✤ X17 boson could be a mediator of a fifth force, characterized by a strong coupling suppression of protons compared to neutrons.
- This evidence/scenario is presently not confirmed or excluded by other experiments or groups.

³H(p,e⁺e⁻)⁴He setup @ ATOMKI

- ✤³H adsorbed on Ti layer
- ✤6 plastic scintillator 82x86x80 mm³
- 6 double-sided silicon strip detector (3 mm wide strips, 0.5 mm thick)
- ✤1 mm thick carbon fiber tube
- Detector acceptance only around 90° with respect to the beam axis
 no tracking

X17 @ nToF

Basic idea: new study of excited ⁴He exploiting both the conjugated reactions:

X17 @ nToF

Basic idea: new study of excited ⁴He exploiting both the conjugated reactions:

³H(p,e⁺e⁻)⁴He

³He(n,e⁺e⁻)⁴He

Physics:

- Probing X17 existence
- X17 Mass, quantic numbers, coupling, life time,...
- Theoretical nuclear physics
- First measurement of $\sigma(E)$ ³He(n,e⁺e⁻)⁴He
- The study of both ³H(p, e+e−)⁴He ← → ³He(n, e+e−)⁴He reactions could shed light on the purpoted proto-phobic nature of the fifth force.

M. Viviani et al.:

"X17 boson and the ${}^{3}H(p,e^{+}e^{-})^{4}He$ and ${}^{3}He(n,e^{+}e^{-})^{4}He$ processes: A theoretical analysis"

arXiv:2104.07808 [nucl-th] , submitted to PRC

Theoretical advices

***** Wide energy range (proton and neutron beams) to explore all resonances with different J^{π}

M. Viviani et al. arXiv:2104.07808 [nucl-th]

Theoretical advices

Wide energy range (proton and neutron beams) to explore all resonances with different J^π
 Large detector acceptance (statistics and kinematics)

M. Viviani et al. arXiv:2104.07808 [nucl-th]

Facilities

- n_ToF @ CERN: pulsed neutron beam in a wide energy range (thermal<E_n<100 MeV).
- Time of flight to establish the single neutron energy (10-10⁸ eV)
- dedicated detector

Measurements: 2022-24 (CERN Lol approved)

- LUNA-MV @ LNGS: high intensity proton beam and low bacground
- ♦ Terminal Voltage $\approx 0.2 3.5$ MV
- I $_{max} \approx$ 100 μ A of protons
- Underground operation
- dedicated detector

³H(p,X17)⁴He → e⁺e⁻

Measurements: 2023-5 (Lol in preparation)

EAR2 @ n_ToF

Neutrons
0.9×10^6
1.1×10^6
$1.2 imes 10^6$
$1.4 imes 10^6$
$1.9 imes 10^6$
$5.8 imes 10^6$
$4.5 imes 10^6$
$1.4 imes 10^6$

Table and Figure: neutrons per pulse (frequency=1.2 sec)

			3He(n,g)4He	3He(n,e+e-)4He	3He(n,X17)4He		
Assuming	En_min (eV)	En_max (eV)	gamma/pulse	IPC/day	X17/Day (vector)	T_min (us)	T_max (us)
0.24 ± 4.0^{21}	1	10	0,8	120	3	411	1300
ρ =8.21*10 ²¹ atoms/cm ³	10	100	0,9	133	3	130	411
target lenght=10 cm	100	1000	1,0	150	4	41	130
Duty Cyclo=100%	1000	1E+04	1,2	182	5	13	41
	1E+04	1E+05	2,1	324	8	4	13
efficiency=100%	1E+05	1E+06	15,7	2518	63	1,30	4
acceptance=100%	1E+06	1E+07	11,3	1812	45	0,41	1,30
		TOTALI>	33	5239	131	0,41	1300

Intrinsic (very) wide energy range exploiting with ToF

Under study: new moderator for neutrons, to increase the population in the MeV energy region

Background of ³He(n,p)⁴He protons

Most energetic protons due to ³He(n,p)⁴He reaction can escape and produce background To reject it: RICH detector ToF Proper envelope thickness

Table and Figure: neutrons per pulse (frequency=1.2 sec)

Energy (MeV)	neutron/spill/10 MeV	proton/pulse	T_EAR2 (ns)
20	2,4E+05	3675	295
30	1,0E+05	869	243
40	5,6E+04	312	212
50	3,5E+04	141	191
60	2,4E+04	74	176
70	1,7E+04	43	164
80	1,3E+04	27	154
90	1,3E+04	147	147
10-100 MeV	1,5E+06	5288	147-295

Assuming: ρ =8.21*10²¹ atoms/cm³ target lenght=10 cm Duty Cycle=100% efficiency=100% acceptance=100%

TARGET: use of a ³He commercial tube

Diameter: 1 inch (25.4 mm) Pressure: 30 bar Thickness: 500 µm Material: 344 stainless steel or Alluminium Lenght: 5-100 cm

Main advantage:: ~no R&D, ~no certification Main Drawback: low target density

TARGET R&D: Cryogenic ³He Target

Main advantage:: high and tunable target density, thin can Main Drawback: complex project and certification

DETETCOR Conceptual design

FRONT

Ellipse centers: e+/e- impact points

Ellipse shapes: e+/e- Directions

RICH simulation

Single Radiator inner radius = 4 cm, 5 mm thick

Single Radiator inner radius = 4 cm, 5 cm thick

p_e = 8 MeV n=1.05 Sensor radius = 10 cm no quantum efficiency applied

Dual Radiator inner radii = 4 and 9 cm, 5 mm thick

ROAD2: TPC with MPGD

$307 \times 307 \text{ mm}^2$ active area SRL - RWELL

Prototype (Design: LNF-INFN) PCB production: ELTOS SpA Detector manufacturing: CERN – PH dept. DT group (Rui de Oliveira) PCB characteristics:

- n.512 1-D strip, with 600 um pitch
- 30 mm gas gap
- Gas mix \rightarrow Ar/C0₂/CF₄ = 60/20/20
- Delivery: end of August

CALORIMETER: Test at EAR2

FINAL DESIGN Still in Progress. Presently 2 options: Ej-200 segmented SCINTILLATOR (~8 cm thick) or LYSO Crystal (~2 cm thick). TRIGGER and e+e- energies.

FRONT

SIDE

Further study on coupling suppression of protons?

similar e.m cross section for the 2 reactions. Vertical bars indicate the thresholds for the X17 opening channel, at E_{beam} ~16 MeV for both neutrons and protons.

Conclusion

- A spectacular anomaly has been recently observed in the emission of electron-positron pairs in the ⁷Li(p,e+e-)⁸Be and ³H(p,e+e-)⁴He reaction.
- This anomaly has been interpreted as the signature of a particle (X17 boson) not foreseen in the standard model of particle physics.
- ✤ A new measurement to confirm (or reject) the existence of X17 particle is mandatory. New informations on X17 coupling are necessary to define a theoretical framework.
- With n_ToF it is possible to exploits the new reaction ³He(n,e+e-)⁴He in a wide energy range and using a dedicated setup, to probe the purpoted protophobic nature of fifth force and to measure X17 properties.
- Standard ³He(n,e+e-)⁴He and ³H(p,γ)⁴He reactions are also of great interest in nuclear physics, providing an important experimental footing for "ab initio" calculations.
- R&D, simulations and theoretical calculations are in progress. Feasibility tests are approved and funded by INFN.
- We are waiting for positive feed back for external funding requests (PRIN, ERC), in which are considered several neutrons/protons induced reactions such as:

³He(n,X17)⁴He, ⁷Be(n,X17)⁸Be, ²H(n,X17)³H @ n_ToF, Demokritos...

³H(p,e+e-)⁴He, ⁷Li(p,X17)⁸Be, ²H(p,X17)³He @ LUNA, ENEA/Frascati...

Thanks for the attention!

ERC tentative program

Neutron Beam Test at Demokritos

- Neutron energies up to 25 MeV depending on the initial reaction
- Neutrons of 5.5 MeV with fluxes up to $1.5 \times 10^6 \text{ n/cm}^2 \text{ s}$

Nuclear Reaction	Proton/Deuteron Energy Range (MeV)	Neutron Energy Range (MeV)	Neutron fluences can reach ~5x10 ⁶ neutrons/cm ² s but for
⁷ Li(p,n) ⁷ Be ² H(d,n)³He ³ H(d,n)⁴He	1.9 to 8.4 0.8 to 8.4 0⊦8 to 8.4	0.1 to 6.7 [*] 3 9 to 11.5 ^{**} 16.4 to 25.7 ^{***}	d- ³ H is lower an order of magnitude compared to the d- ² H reaction due to cross sectio energy dependence

- used to test ATLAS MDT's
- for the upgrade of the ATLAS NSW TGC's & Micromegas were (and will be) tested
- GEM detectors were tested

ERC tentative program

GEM neutron Beam Test at Demokritos

ERC tentative program

