

New Results on Light Hadron Spectroscopy from BESIII

Isabella Garzia, On behalf of the π FE working group

Università degli Studi di Ferrara September 8, 2021 University of Ferrara

Light Hadron Physics

The study of light hadron physcis is central to the understanding of confinement physcis

Hadron Spectrum

... but QCD allows also different combinations of quarks and gluons: EXOTIC hadrons

A lot of exotic states observed experimentally, but their nature is still far from being understood!!!

Hadron spectroscopy: establish the spectrum and study the exotic hadrons properties

Hunting for glueballs and new form of hadrons

- Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies
- ✓ Gluon-rich process
- ✓ Clean process
- ✓ High statistics

- Glueballs can mix with ordinary quarkantiquark states
- > Predicted large BFs for glueballs in J/ψ radiative decays

PRL110,
021601
$$\Gamma(J/\psi \to \gamma G_{0^{++}})/\Gamma_{\text{tot}} = 3.8(9) \times 10^{-3}$$

PRL111, 091601 $\Gamma(J/\psi \to \gamma G_{2^{++}})/\Gamma_{\text{tot}} = 1.1(2)(1) \times 10^{-2}$

Beijing Electron Positron Collider II

http://english.ihep.cas.cn

The **HS** Detector

Nucl. Instr. Meth. A614, 345 (2010)

Dataset

Dataset

http://english.ihep.cas.cn/bes/doc/2250.html

Data Sets

Useful Information
Data Sets
Meetings
Hypernews
Documentation
Other Links
Visitor Information
Contact US

User Information

BESIII started data taking for physics since 2009, and the following data samples were collected:

- 2009: 0.225x10⁹ J/psi at Ecm=3.097 GeV, 0.106x10⁹ psi(3686) at Ecm=3.686 GeV
- 2010 + 2011 : 2.9 fb⁻¹ psi(3770) at 3.773 GeV
- 2011 : 0.5 fb⁻¹ psi(4040) at 4.009 GeV, 0.024 fb⁻¹ tau mass scan at around 3.554 GeV, 2011
- 2012: 1.3x10⁹ J/psi at Ecm=3.097 GeV, 2009 (0.225x10⁹), 0.5x10⁹ psi(3686) at Ecm=3.686 GeV, 2009 (0.106x10⁹)
- 2013 : 1.9 fb⁻¹ Y(4260) at 4.23 and 4.26 GeV, 0.5 fb⁻¹ Y(4360) at 4.36 GeV, 0.5 fb⁻¹ Y(4260) and Y(4360) scan
- 2014: 0.8 fb⁻¹ R scan, 104 energy points between 3.85 and 4.59 GeV, 0.5 fb⁻¹ at 4.60 GeV, 0.1 fb⁻¹ at 4.47 and 4.53 GeV for line shape, 0.05 fb⁻¹ around the threshold of Lambda_c pair, 1.0 fb⁻¹ at 4.42 GeV
- 2015: 0.5 fb⁻¹ data for R scan from 2.0 to 3.08 GeV, 0.1 fb⁻¹ data @ 2.125 GeV
- 2016 : 3.1 fb⁻¹ data at 4.18 GeV
- 2017 : 3.8 fb⁻¹ 8 energy points from 4190~4280 MeV, 0.46 fb⁻¹ around chi_c1 mass , 0.22 fb⁻¹ around 3872 MeV
- 2018 : 4.6 x 10⁹ J/psi data set (1.4 /fb), 0.13 /fb tau scan data, 0.5 /fb, 9 points for psi(3686) scan data
- 2019 : 4.2 x 10⁹ J/psi data set (1.218 /fb), 3.8/fb scan data for XYZ, 8points (4.13, 4.16, 4.29-4.44 GeV)
- 2020 : 3.8/fb scan data for XYZ and Lambda_c, 6 points (4.61-4.70 GeV)

.... and more data will be collected in the next years

Latest Results on X(1835)

6.3σ

1.8

2

1.6

 $M(\gamma\phi)$ (GeV/c²)

1.4

1.2

1.09×10⁹ J/ψ @ BESIII

J/ $\psi \rightarrow \gamma$ η' $\pi^-\pi^+$ Significant distortion of the $\eta' \pi^- \pi^+$ line shape near the ppbar mass threshold

Two fit models are taken into account and both support the existence of a $p\overline{p}$ moleculelike or bound state

1.3×10⁹ J/ψ @ BESIII

 $J/\psi \rightarrow \gamma \gamma \phi$: two structures corresponding to

- $\eta(1475)$ and X(1835) are observed
- X(1835) and $\eta(1475)$: $J^{PC} = 0^{-+}$ assignment favored
- Sizable $s\bar{s}$ component in X(1835)
 - more complicated than a pure $N\overline{N}$ state

Solution	Resonance	$m_R ({\rm MeV}/c^2)$	Γ (MeV)
I	$\eta(1475)$	$1477\pm7\pm13$	$118\pm22\pm17$
(Destr. Int.)	X(1835)	$1839\pm26\pm26$	$175\pm57\pm25$
II (Constr Int)	$\eta(1475)$	$1477 \pm 7 \pm 13$	$118 \pm 22 \pm 17$
(constr : mr.)	X(1835)	$1839 \pm 26 \pm 26$	$175 \pm 57 \pm 25$

Isabella Garzía -πFE- 8 Sept2021

1.6

 $M(\gamma\phi)$ (GeV/c²)

1.8

2

1.4

1.2

X(18xx) between 1.8-1.9 GeV

X(18xx) between 1.8-1.9 GeV

Search for X(1835) in other decay modes

400

300

200

100

1.4

• $J/\psi \rightarrow \omega \eta' \pi^+ \pi^-$ hadronic decay and search for X(1835) $\rightarrow \eta' \pi^+ \pi^-$

PRD 99, 071101 (R) (2019) done in FERRARA

- No obvious sign of X(1835)'s existence
- Large gluon component? [PRD74,034019]

 $\mathcal{B}(J/\psi \to \omega \eta' \pi^+ \pi^-) = (1.12 \pm 0.02 \pm 0.13) \times 10^{-3}$ $\mathcal{B}(J/\psi \to \omega X(1835), \ X(1835) \to \eta' \pi^+ \pi^-) < 6.2 \times 10^{-5}$

@ 90% C.L.

Events/(0.011 GeV/c²)

The puzzle is still not complete

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta'$

- X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta$ ' invariant mass spectra (PRL106,072002)
- The X(2370) measured mass is consistent with the pseudoscalar glueball candidate predicted by LQCD calculation (PRD73,014516)

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta'$

- X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta$ ' invariant mass spectra (PRL106,072002)
- The **X(2370)** measured mass is consistent with the pseudoscalar glueball candidate predicted by LQCD calculation (PRD**73**,014516)

 $\blacktriangleright \text{ No evidence of } X(2120) \text{ is found}$ $\mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K^+ K^- \eta') < 1.49 \times 10^{-5}$ $\mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K^0_S K^0_S \eta') < 6.38 \times 10^{-6}$

Clear X(2370) signal observed with significance of about 8.3σ $M_{X(2370)} = 2341.6 \pm 6.5 \pm 5.7 \text{ MeV}/c^2 \quad \Gamma_{X(2370)} = 117 \pm 10 \pm 8 \text{ MeV}$ $\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta') = (1.79 \pm 0.23 \pm 0.65) \times 10^{-5}$ $\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K_S^0 K_S^0 \eta') = (1.18 \pm 0.32 \pm 0.39) \times 10^{-5}$

Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$

Branching ratios prediction for the decay of pseudoscalar glueball with M~2.37 GeV into three pseudoscalar mesons (PRD **87**,054036 (2013))

$$\Gamma_{G \to \eta \eta \eta'} / \Gamma_G^{tot} = 0.00082$$
$$\Gamma_{G \to KK\eta'} / \Gamma_G^{tot} = 0.011$$
$$\Gamma_{G \to \pi \pi \eta'} / \Gamma_G^{tot} = 0.090$$

> No obvious signal of X(2370)

Simultaneous unbinned maximum likelihood fit to the ηηη' is performed and the 90% C.L. upper limit is calculated

(agree with PRD **87**,054036)

 $\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma \eta \eta \eta') < 9.2 \times 10^{-6}$

Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$

Isabella Garzía -πFE- 8 Sept2021

Branching ratios prediction for the decay of pseudoscalar glueball with M~2.37 GeV into three pseudoscalar mesons (PRD **87**,054036 (2013))

$$\Gamma_{G \to \eta \eta \eta'} / \Gamma_G^{tot} = 0.00082$$

$$\Gamma_{G \to KK\eta'} / \Gamma_G^{tot} = 0.011$$

$$\Gamma_{G \to \pi \pi \eta'} / \Gamma_G^{tot} = 0.090$$

➢ No obvious signal of X(2370)

Simultaneous unbinned maximum likelihood fit to the $\eta\eta\eta$ ' is performed and the 90% C.L. upper limit is calculated

(it does not contradict PRD 87,054036)

FIRST OBSERVATION in the ηηη' invariant mass spectra

Search for X(1835) in other decay modes

What we can do?

- $J/\psi \rightarrow \omega \eta' \pi^+ \pi^-$ hadronic decay and search for X(1835) $\rightarrow \eta' \pi^+ \pi^-$ using the full BESIII dataset (still free analysis)
- $J/\psi \rightarrow \phi \eta' \pi^+ \pi^-$ (there is another group working on it advanced state)
- $J/\psi \rightarrow \rho X(1835), X(1835) \rightarrow \eta' \pi^+ \pi^- (BR \text{ predicted to be very small in ref.}$ <u>https://arxiv.org/pdf/hep-ph/0511186.pdf</u>)
- J/ψ→γπ⁺π⁻f₁(1285) : observation of a new state X(2200) in the 4pi eta invariant mass spectra analysis with principal author left https://hnbes3.ihep.ac.cn//HyperNews/get/AUX/2013/12/17/22.43-54155-gammapipif1_v7.pdf

Search for X(1835) in other decay modes

What we can do?

- $J/\psi \rightarrow \omega \eta' \pi^+ \pi^-$ hadronic decay and search for X(1835) $\rightarrow \eta' \pi^+ \pi^-$ using the full BESIII dataset (still free analysis)
- $J/\psi \rightarrow \phi \eta' \pi^+ \pi^-$ (there is another group working on it advanced state)
- $J/\psi \rightarrow \rho X(1835), X(1835) \rightarrow \eta' \pi^+ \pi^- (BR \text{ predicted to be very small in ref.}$ <u>https://arxiv.org/pdf/hep-ph/0511186.pdf</u>)
- J/ψ→γπ⁺π⁻f₁(1285) : observation of a new state X(2200) in the 4pi eta invariant mass spectra analysis with principal author left https://hnbes3.ihep.ac.cn//HyperNews/get/AUX/2013/12/17/22.43-54155-gammapipif1_v7.pdf

All the analysis presented up to now were performed with lower 2009 and/or 2012 Jpsi data only *>* all the analysis can be improved

Amplitude Analyses in BESIII

Amplitude Analyses in BESIII

- J/ ψ radiative decays are ideal for searching glueballs
 - $J/\psi \to \gamma PP: 0^{++}, 2^{++}, ...$
 - $J/\psi \rightarrow \gamma PPP, \gamma VV: 0^{-+}$
- Neutral channel is much cleaner than the charged ones
- Very complicated mass spectrum in the low mass region: many broad, overlapping states complicate the study of the spectra
- Amplitude analysis: toll to extract the complex amplitudes from experimental data
 - Models with free parameters
 - Consider the kinematic of final states particles
 - Vary the parameters to maximize the likelihood
 - Mass Dependent (MD) PWA: model the dynamics of particle interactions as coherent sum of resonances
 - Mass Independent (MI) PWA: make minimal model assumptions and measure the dynamical amplitudes independently in small regions of two-meson invariant mass (PRD92, 052003 (2015))

 $\mathcal{PWA} \text{ of } J/\psi \rightarrow \mathcal{K}^+\mathcal{K}^-\pi^0$

Partial Wave Analysis (PWA) is a powerful tool to study hadron spectra and to search for glueball and exotic states in J/ψ radiative decays

~225×106 J/ψ @ BESIII

PRD **100**,032004(2019)

Isobar model: the amplitude is parameterized as a sum of sequential quasi-two-body decay process [EPJA16,537(2003)]

$\mathcal{PWA} \text{ of } J/\psi \rightarrow \mathcal{K}^+\mathcal{K}^-\pi^0$

PRD **100**,032004(2019)

- Dominant contribution from K^{*}(892)
- First observation of $K_2^*(1980)$ and $K_4^*(2045)$ in J/ ψ decays
- Two clear $J^{PC}=1^{--}$ structures observed in K⁺K⁻ mass spectrum: possible relation with $\omega(1650)$ and $\rho(2150)$

$\mathcal{PWA} \text{ of } \psi(3686) \rightarrow KK\eta$

- Observation of $\phi(1680)$ in the KK mass spectra
- 1^{--} state needed to describe the dip around 1.7 GeV/c^2 in the KK mass spectra (not excluded the possibility to be the $\rho(1700)$)
 - 2 1.5 $M(K^+K^-)$ (GeV/c²)
- 1^{--} state needed to describe the dip around 1.7 GeV/ c^2 in the KK mass spectra (not excluded the possibility to be the $\rho(1700)$)
- A broad structure around 2.2 GeV/c2 is observed, either $\phi(2170)$ or $\rho(2150)$?

2.5

Conclusions and PWA possibilities

- $J/\psi \rightarrow KK\eta$ still PWA free analysis
- Start a collaboration with Mainz group (a lot of PWA analyses were done)
- There is also the possibility to collaborate with Ismail (expert of PWA analysis)
- Other ideas are very welcome
- In the next future (I hope beginning of 2022) I plan to start a PWA analysis

Thanks for your attention

Strangeonía Spectrum

Strangeonía Spectrum

- $\phi(2170)/Y(2175)$ observed for the first time in the ϕf_0 channel by BaBar (PRD 74,091103; PRD 76,031102)
 - BESIII: PRL100,102003(2008)
 - Belle: PRD**80**,031101 (2009)

Isabella Garzía – HQL2021 - xxxx 2021

$e^+e^- \rightarrow \phi \eta$ and $\phi \eta'$

- The ratio between $\phi\eta$ and $\phi\eta'$ partial width is important observable to access $\phi(2170)$ as a ssg hybrid state
 - partial width larger in the $\phi\eta$ channel by a factor [3-200] w.r.t $\phi\eta'$

Summary of $\phi(2170)$

Isabella Garzía - HQL2021 - xxxx 2021

Conclusions

\rightarrow J/ ψ decay provides an excellent laboratory to study light hadron decays

• Search for glueball and exotic states

> <u>10 billion of J/\$\$\$ data collected at BESIII</u>

- This huge data sample allows to study light meson decays with unprecedent statistics: unique opportunity to map the light hadron spectroscopy
- More interesting results are expected

> More data will be collected in the next years

- More studies in the strangeonium sector
- New PWA
- .

Back-up slídes

BESIII physics programme

Light hadron physics

- Meson and baryon spectroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- two-photon physics
- Form factors

QCD and τ

- Precision R measurement
- τ decay

Charmonium physics

- Precision spectroscopy
- Transitions and decays

XYZ meson physics

- Y(4260), Y(4360) properties
- Z_c(3900)⁺, ...

Charm physics

- Semi-leptonic form factors
- Decay constants f_{D} and f_{Ds}
- CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
- $D^0 \overline{D}^0$ mixing, CPV
- Strong phases

Precision mass measurements

- τ mass
- D, D^{*} mass

Isabella Garzía - University of Ferrara and INFN

\mathcal{PWA} of $J/\psi \rightarrow \gamma \eta \eta$

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

Isabella Garzía - Uníversity of Ferrara and INFN

PRD 87, 092009 (2013)

PWA of J/ψ \rightarrow γηη

- $J/\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
₀ (1500)	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) imes 10^{-5}$	8.2σ
₀ (1710)	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) imes 10^{-4}$	25.0σ
₀ (2100)	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) imes 10^{-4}$	13.9σ
^r ₂ (1525)	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) imes 10^{-5}$	11.0σ
² (1810)	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) imes 10^{-5}$	6.4σ
² (2340)	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) imes 10^{-5}$	7.6 <i>o</i>

- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ gluball
- PWA requires a strong contribution from f₂(2340) with fairly large production rate ⇒ it *could be a good candidate for the lowest lying tensor glueball*

PRD 87, 092009 (2013)

PWA of J/ψ \rightarrow γηη

- $J/\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ glueball
- PWA requires a strong contribution from f₂(2340) with fairly large production rate ⇒ it *could be a good candidate for the lowest lying tensor glueball*

PRD 87, 092009 (2013)

$\mathcal{PWA} \text{ of } J/\psi \rightarrow \gamma \mathcal{K}^{O}{}_{S}\mathcal{K}^{O}{}_{S}$

- $J/\psi \rightarrow \gamma K_S K_S$: clean laboratory to search for even++ states
- PWA based on 1311M of J/ψ events

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765\pm2^{+1}_{-1}$	1723^{+6}_{-5}	$146\pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364\pm9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411\pm10\pm7$	•••	$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$	33σ
$f_2'(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345_{-40}^{+50}	$507 \pm 37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$	13σ

Isabella Garzía - University of Ferrara and INFN

- $f_0(1710)$ and $f_0(2200)$ dominate the scalar spectrum, but we need also to include $f_0(2330)$
- BR of $f_0(1710)$ is one order of magnitude larger than BR of $f_0(1500)$: $f_0(1710)$ overlap with glueball state
- Structure near 1.5 GeV dominated by tensor contribution f_2 '(1525), while above 2 GeV is dominantly f_2 (2340)

PRD 98, 072003 (2018)

 $\mathcal{PWA} \text{ of } J/\psi \rightarrow \gamma \mathcal{K}^{O}{}_{S}\mathcal{K}^{O}{}_{S}$

- Mass independent PWA results
 - Amplitudes extracted independently in bins of K_SK_S invariant mass

- Agreement with results from MD PWA (no acceptance correction included)
- MI results useful for a systematic study of hadronic interaction

PRD 98, 072003 (2018)

PWA status and plans in a nutshell

- 0++: the production rate $f_0(1710)$ is compatible with LQCD prediction for a pure gauge scalar glueball
- 2++: f₀(2340) seems to be a good candidate for tensor gluball [PRL111,091601] (large production rate)
- $0-+: \eta(2225)$ is confirmed and two additional pseudoscalar states, $\eta(2100)$ and X(2500), are observed

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta'$

Search exotics in $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Isabella Garzía - University of Ferrara and INFN

$\mathcal{PWA} \text{ of } \psi(3686) \rightarrow \mathcal{KK}\eta$

PRD 101,032008(2020)

TABLE I. Mass, width and significance of each component in the baseline solution. The first uncertainties are statistical and the second are systematic.

Resonance	M (MeV/ c^2)	Γ (MeV)	Significance
$\phi(1680)$	1680^{+12+21}_{-13-21}	185^{+30+25}_{-26-47}	14.3σ
X(1750)	1784^{+12+0}_{-12-27}	106^{+22+8}_{-19-36}	10.0σ
$ \rho(2150) $	2255^{+17+50}_{-18-41}	$460^{+54+160}_{-48-90}$	23.5σ
$\rho_{3}(2250)$	2248^{+17+59}_{-17-5}	$185^{+31+17}_{-26-103}$	8.5σ
$K_2^*(1980)$	2046^{+17+67}_{-16-15}	408^{+38+72}_{-34-44}	19.9 <i>σ</i>
$K_3^*(1780)$	1813^{+15+65}_{-15-16}	191^{+43+3}_{-37-81}	11.2σ

$a_0(980) - f_0(980)$ mixing

PRL **121**, 022001(2018)

 $1^{-}(0^{++})$ $0^{+}(0^{++})$

- $a_0(980) f_0(980)$ still controversial explanation about their nature
- Direct measure of the $f_0(980) a_0(980)$ mixing in the process proposed in 1979 [PLB88,367] $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a^0_0(980) \rightarrow \phi \eta \pi^0$ and $\chi_{c1} \rightarrow \pi^0 a^0_0(980) \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$ (isospin violating decays)

Isabella Garzía - University of Ferrara and INFN

$a_0(980) - f_0(980)$ mixing

Isabella Garzía - University of Ferrara and INFN