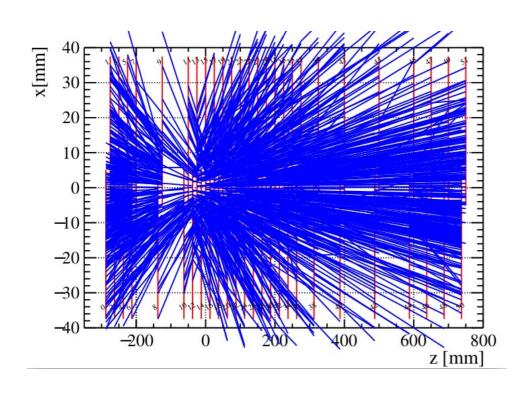
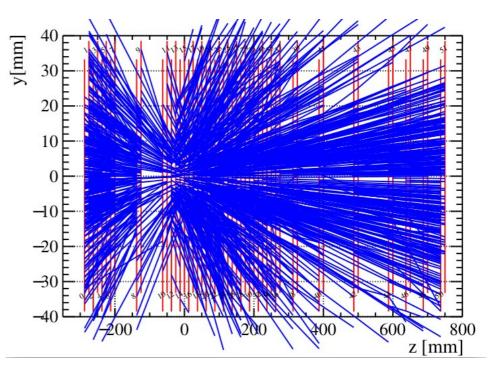


TimeSPOT WP4: Stato delle attività a Milano

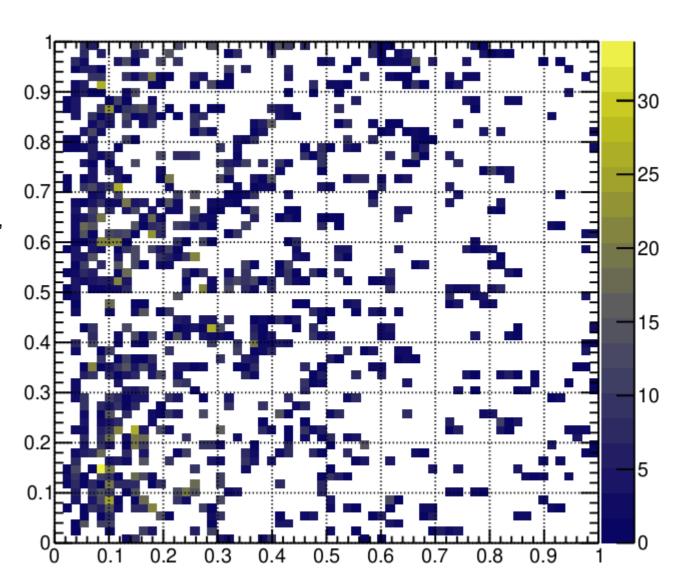
Marco Petruzzo

2 Settembre 2021


Software implementation status


- Construction of the "True" stubs for the tracks (needed for efficiency calculation) → DONE
- Identification of stubs in all the couples of adjacent planes, using the cuts from "standard reconstruction" → DONE
- "Tracking Layer" implementation, populated with Engines and 2D histogram for visualization →
 DONE
- Engine implementation, mimicking the actual hardware implementation \rightarrow **DONE**
 - Receives the stubs
 - Evaluates a binary weight in the central cell and lateral cells
 - Identify a track if the central cell is over threshold and represents a local maximum with respect to the lateral cell
- Quantitative results available in a short time
- Training of the Stub Makers (evaluation of coarse cuts for hardware implementation) → DONE
- Training of the Tracking Layer for uniform distribution of the Engines within the Layer → DONE

- Example of stubs identified on "True Tracks"
 - Very similar to the full tracks, as expected



- Example of the populated tracking layer
 - Each bin represents the central cell of each Engine
 - Engines distributed in the normalized space of (r+,phi+) based on "min-max" values
 - The tracking layer is positioned at z = 400 mm
 - After the tracking layer training (based on the quantiles of r+, phi+ distribution), the layer will be uniformly populated for better use of the resources

- Inverse normalization functions for R and Phi in the tracking plane at z = 400 mm
 - R function is evaluated based on the Forward / VELO reconstructible tracks
 - Phi function is evaluated from simple theoretical distribution

- Normalized tracking layer
 - normalized space of (r+,phi+)
 - Green: "true" tracks
 - Red: reco tracks
 - normalized space of (r+,phi+) based on the previously evaluated quantiles
 - The tracking layer is positioned at z = 400 mm
- Only "True stubs" have been used (for training)
 - "reco stubs" will be used for the full reconstruction

Tracking layer (loose cuts)

- All the identified stubs are used to populate the tracking layer
 - The stubs are filtered using the cuts (slope/phi difference cuts) from the standard VELO reconstruction algorithm
- "Crowded" situation
 - Many "reco" tracks not associated with real tracks
 - In particular for low "R" values
- The "standard" cuts are too loose

Tracking layer (tight cuts)

Tighter cuts implemented:

- Evaluated from hits correlation in adjacent layer
- Training based on the "reconstructible" tracks
- Better rejection of fake stubs

Cleaner picture:

- Fewer identified stubs → reduced contribution to the engines (blue dots)
- Fewer identified tracks, typically ghost (red circles)

Layer's training

- For each layer:
 - R distribution is evaluated
 - Phi distribution is evaluated
 - R/Phi variables
 normalization functions
 evaluated independently
 from the corresponding
 distribution
- Example is shown for layer 18

Layer's training

- For each couple of layers:
 - R/Phi normalized variables are binned (8, 32 bins)
 - R0/R1 (and Phi0/Phi1) bins correlation is evaluated. Empty bins are not considered in the reconstruction process
 - A candidate stub belonging to an empty bins is not identified
- Example is shown for layer 18-20 (same side)