

Muon g-2/EDM Experiment at J-PARC

Takashi Yamanaka (Kyushu University) for the J-PARC E34 Collaboration

Muon g-2 and EDM

- Anomalous magnetic moment (g-2) of muon
 - Calculated in 0.37 ppm precision for muon in the SM (Phys. Rep. 887 (2020) 1–166)
 - The best experimental precision is 0.46 ppm by the FNAL E989 Experiment.
 - The experimental average value deviates from the SM prediction by 4.2 σ .
 - Can new physics explain this discrepancy?

• Electric dipole moment (EDM) of muon

- If non-zero EDM exists, it means T violation.
- Current experimental limit for muon is $|d_{\mu}| < 1.8 \times 10^{-19} \text{ e} \cdot \text{cm}$ by the BNL E821 experiment.
 - Phys. Rev. D 80, 052008 (2009)
- The SM expectation of muon EDM is ${\sim}2\,{\times}\,10^{\text{-38}}\,\text{e}\,\cdot\,\text{cm}.$
- New physics predicts much larger EDM.

Phys. Rev. Lett. 126, 141801 (2021)

Electric Field Contribution to Muon g-2 Measurement

• The spin precession vector (with respect to cyclotron motion) in the electromagnetic field can be written as follows.

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} - \frac{\vec{E}}{c} \right) \right]$$

- In the BNL and FNAL experiments, to use a beam focusing electric field, the muon momentum is chosen to satisfy $a_{\mu} \frac{1}{\nu^2 1} = 0$.
 - It corresponds to p=3.094 GeV/c and is called as the magic momentum.
- In the J-PARC experiment, the electric field itself is eliminated, $\vec{E} = 0$.
 - Use of a reaccelerated thermal muon beam is a key of this method.

Reaccelerated Thermal Muon Beam

Full tracking detector for decay positrons ٠

field.

J-PARC E34 Experiment Features

Comparison of Experiment Parameters

Table 1. Comparison of BNL-E821, FNAL-E989, and our experiment.

	BNL-E821	Fermilab-E989		Our experiment	J-PARC E34
Muon momentum	3.09 GeV/c			300 MeV/c	
Lorentz γ	29.3	5		3	
Polarization	100%	6 Radius of cyclo	otron	50%	Radius of cyclotron
Storage field	B = 1.4	15 T motion: 7.1 m		B = 3.0 T	motion: 333 mm
Focusing field	Electric qua	drupole	Ve	ry weak magnetic	
Cyclotron period	149 r	18		7.4 ns	
Spin precession period	4.37	μs		$2.11 \ \mu s$	
Number of detected e^+	5.0×10^{9}	1.6×10^{11}		5.7×10^{11}	
Number of detected e^-	3.6×10^{9}	_		_	
a_{μ} precision (stat.)	460 ppb	100 ppb		450 ppb	
(syst.)	280 ppb	100 ppb		<70 ppb	
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \mathrm{cm}$	_	1.	$.5 \times 10^{-21} e \cdot \mathrm{cm}$	
(syst.)	$0.9 \times 10^{-19} e \cdot \mathrm{cm}$	_	0	$36 \times 10^{-21} e \cdot \mathrm{cm}$	

PTEP 2019 (2019), 053C02

J-PARC Facility

Located at Ibaraki prefecture in Japan

Muon Facility at J-PARC

<u>S-line</u>

- surface μ^+
- dedicated to μ SR
- S1 area is available
- S2 is under construction
- S3/S4 are planned

3 GeV proton from RCS

 $2 \times 10^{15} / s @1 MW$

<u>U-line</u>

- ultra slow μ^+
- U1A for nm- μ SR
- U1B for μ microscopy
- under commissioning

<u>H-line</u>

- surface μ⁺ (>10⁸ μ⁺/s), decay μ⁺/μ⁻, e⁻
- for high intensity & long beamtime experiments
- H1 for DeeMe & MuSEUM
- H2 for g-2/EDM & transmission muon microscopy
- under construction

<u>D-line</u>

- decay μ^{+}/μ^{-} , surface μ^{+}
- D1 area for μ SR
- D2 for variety of science

H-line Construction

- Construction of H-line already started.
- The minimum construction of the upstream part of H-line (H1 area) has finished and it is ready to start beam commissioning.

September 17, 2021

Fig. 2. The H-line layout.

Thermal Muon Beam

- Surface muon beam from the H-line is used as the source.
 - Monochromatic and ${\sim}100\%$ polarized beam
- Muon beam is stopped at a target and muonium (bound state of eand $\mu^{\,+})$ is produced.
 - Laser-ablated silica aerogel is used for muonium production target.
- An electron is stripped from a muonium by laser and thermal muon beam is produced.

Various laser-ablated structures and aerogel materials were studied.

Muonium Ionization

- In the original plan, an intense Lyman- α laser is used to ionize muonium.
 - To achieve the design goal of 100 μJ power laser, larger crystal is produced and tested in J-PARC MLF U-line.

 As an alternative method, ionization scheme with 244 nm laser is being developed collaborating with the muonium 1S-2S spectroscopy measurement experiment.

Slow muon beam line constructed for Mu 1S-2S experiment

- Thermal muon beam is accelerated to *p*=300 MeV/c in LINAC.
- Acceleration of muon (to be precise Mu⁻) with RFQ has been succeeded already.

Muon Acceleration (2)

- Next parts of acceleration cavities were designed.
- Their prototypes were produced, and performance evaluation were almost finished.
- Actual cavities of upstream part (IH-DTL and 1st tank of DAW-CCL) were started to be produced.

Prototype of IH-DTL

Cold model of DAW

3D Spiral Injection

- To inject the 300 MeV/c muon beam into 66 cm storage region, 3D spiral injection scheme was developed.
- Prototypes of kicker were fabricated, and the injection scheme is validated using low momentum electron beam.

3D spiral Injection orbit

Prototype of kicker coils

Spiral injection test equipment using electron beam

Storage Magnet

- 3 T MRI-type solenoid magnet will be used to store a muon beam.
- Weak focusing magnetic field is also applied to keep muon beam size..

Magnetic Field Measurement

- High uniformity of the magnetic field is achieved by shimming.
 - Local uniformity of 1 ppm was confirmed with the magnet used in the MuSEUM (muonium hyperfine structure measurement) experiment.
- High precision NMR probes are used for field measurement.
 - The standard probe was cross-calibrated between J-PARC g-2 and FNAL g-2 at Argonne National Laboratory (ANL) since 2017.
 - In 2017, ~7 ppb agreement was obtained with 15 ppb uncertainties.

Standard NMR probe

MRI magnet for MuSEUM experiment

Magnetic field after shimming

Cross calibration at ANL in January 2019

September 17, 2021

Positron Tracking Detector

- Positrons from decay of stored muon beam are detected by the detector consisting of silicon strip sensors installed in the storage magnet.
 - from hits in radially arranged detector modules called "vanes". Positron tracks are reconstructed
 - There will be 40 vanes in total.
- Each vane has silicon strip sensors in both sides with their strip directions orthogonal each other.

Track Reconstruction

- To manage detector simulation and track reconstruction, a new software framework was developed (named "g2esoft").
- Track reconstruction algorithm operating in high track density is being implemented in this software framework.

Simulated positron hits and reconstructed tracks with 25 positrons

Steering files (xml) Input/output files Output tree Input tree Processors to run Configuration of optional each module Processor Processor Processor Tracking A 3D hit Strip <u>Pr</u>ocessor digitization reconstruction Tracking B

Concept of g2esoft

Expected highest pile-up condition

Track reconstruction efficiency using the current algorithm

EDM Measurement

If there is a contribution from the EDM to the muon spin precession, the combined angular velocity vector with respect to the momentum direction is obtained as

$$\vec{\omega} = \vec{\omega}_a + \vec{\omega}_\eta = -a \frac{q}{m} \vec{B} - \eta \frac{q}{2m} (\vec{\beta} \times \vec{B}).$$
g-2 EDM

•
$$\omega_{\eta}/\omega_{a}$$
 (with $d_{\mu}=10^{-21}$ e • cm) is about 10^{-5}

- → Too small to see a ω_{η} contribution (~10⁻¹⁰) in $|\omega|$ But the tilt of angular velocity vector is visible (~10⁻⁵ rad).

$$\tan \delta = \frac{\omega_{\eta}}{\omega_{a}} = \frac{\eta \beta}{2a}.$$

- The tilt of the angular velocity vector is observed as an asymmetry between up-going and down-going decay positrons.
 - In practice, the up-down asymmetry as a function of time will be used to extract an EDM value.

Detector Alignment

- To achieve 10⁻²¹ e cm sensitivity of the EDM, sensors on the detector need to be positioned in the precision better than 1 μ m.
- Detector assembly aiming at the accuracy of 1 μ m in sensor plane is being developed.
 - Sensor assembly with the position deviation less than 3 $\,\mu$ m was achieved so far.
- A way to measure sensor positions using positron tracks is also being developed.

FCCP2021

Sensor assembly using a coordinate measuring machine (CMM)

Example of the deviation from the target position after sensor gluing

4 sensors glued on frame

measuring positions of marks on each corner of sensors with a CMM.

Experiment Status

- A revised TDR was submitted to review committee in December 2017.
- Summary paper of the TDR was published by PTEP in 2019
 - <u>PTEP 2019 (2019), 053C02</u>
- KEK-SAC endorsed the experiment for the near-term priority in 2019.
- KEK prepared for a function request to Japanese government (MEXT) in 2020.
- The experiment was funded by Specially Promoted Research by JSPS from 2020.

116 members from Canada, China, Czech, France, India, Japan, Korea, Russia, USA

Domestic institutes : Kyushu, Nagoya, Tohoku, Niigata, Tokyo, Ibaraki, RIKEN, JAEA, etc. KEK: IPNS, IMSS, ACC, CRY, MEC, **CRC**

19th Collaboration Meeting in Dec. 2019@J-PARC

Sched	lule a	nd Mil	leston	es		Data taking	First result
	2021	2022	2023	2024	202	.5	2026
KEK Budget	Re to	questing from MEXT Ministry of Finance					
Surface muon	★ Beam at H1	area	★ Beam at H2 area			50	
Bldg. and facility	*	Engineering design		★ Completion		ionin	Data taking
Muon source	★ Ionization tes	H St @S2	I 📩 Ionization test a	: H2		nissi	
LINAC		★ 1 MeV acce	leration@S2 ★ 4.5 MeV@ H2	★ 10 MeV	★ 210 MeV	- Tuo	
Injection and storage		★ Completion of electron injection	test		★ m	uon injection	
Storage magnet			★ B-field probe re	ady	★ Shimm	ing done	
Detector	*	Mass production ready		★ Installation			
DAQ and computing			★ Ready				
Analysis		r F	Analysis software ready Analysis environment re	ady			

Summary

- In the J-PARC E34 experiment, measurement of muon g-2 and EDM is planned with a method different from BNL/FNAL experiments.
 - Use of reaccelerated thermal muon beam enables muon beam focusing without an electric field.
 - Use of lower momentum muon beam enables the compact storage region with highly uniform magnetic field.
 - The tracking detector for decay positrons reduces pile-up of signals and is able to measure the momentum direction of positrons, which is required for the EDM measurement.
- Construction of the beam line has been started and other components of the experiment also move to the construction phase.
- Funding status is getting better and the start of the data taking is scheduled in 2025.

Backup

End-to-End Simulation

• Efficiency of muon beam at each step is estimated using the latest simulations and measurements.

- Cumulative efficiency is 1.3×10^{-5}

Subsystem	Efficiency	Subsystem	Efficiency
H-line acceptance and trans-	0.16	DAW decay	0.96
mission			
Mu emission	0.0034	DLS transmission	1.00
Laser ionization	0.73	DLS decay	0.99
Metal mesh	0.78	Injection transmission	0.85
Initial acceleration transmis-	0.72	Injection decay	0.99
sion and decay			
RFQ transmission	0.95	Kicker decay	0.93
RFQ decay	0.81	e^+ energy window	0.12
IH transmission	0.99	Detector acceptance of e^+	1.00
IH decay	0.99	Reconstruction efficiency	0.90
DAW transmission	1.00		

Statistics Estimation

Estimated statistics at 1 MW proton beam and 2×10^7 s run (~230 days)

	Estimation
Total number of muons in the storage magnet	$5.2 imes 10^{12}$
Total number of reconstructed e^+ in the	$5.7 imes 10^{11}$
energy window $[200, 275 \text{ MeV}]$	
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
Uncertainties on EDM $[10^{-21} e \cdot cm]$	1.5 (stat.)
	0.36 (syst.)