Sub-percent determination of the HVP contribution to a_{μ} from BMWc [Nature 593 (2021) 7857, 51-55]

Finn M. Stokes

on behalf of the Budapest-Marseille-Wuppertal collaboration

Borsanyi, Fodor, Guenther, Hoelbling, Katz, Lellouch, Lippert, Miura, Parato, Szabo, Stokes, Toth, Torok, Varnhorst

Overview

- Data-driven SM prediction differs from experiment by 4.2σ
- Our recent lattice result is 2.1σ higher than the data-driven value
- Consistent with experiment within 1.5σ

Finn M. Stokes

Standard Model contributions

$a_{\!\mu}^{QED} imes 10^{10}$	11 658 471.893	±	0.0104
$a_{\!\mu}^{EW} imes 10^{10}$	15.36	±	0.10
$a_{\!\mu}^{HVP} imes 10^{10}$	684.5	±	4.0
$a_{\mu}^{HLbL} imes$ 10 ¹⁰	9.2	±	1.8
$a_{\!\mu} imes 10^{10}$	11 659 208.9		6.3

Errors dominated by QCD corrections

- Hadronic vacuum polarisation
- Hadronic light-by-light scattering

$a_{\mu}^{\text{LO-HVP}}$ from phenomenology $Im\left[\cdots\right] \sim \left|\cdots\right]^{2}$ hadrons

- Use optical theorem and dispersion relation to relate to coupling of virtual photon to hadrons
- Evaluate using e⁺e⁻ scattering data
 - Predominantly the $\pi^+\pi^-$ channel

Dispersive approach

$$a_{\mu}^{ ext{LO-HVP}} = rac{m_{\mu}^2}{12\pi^3} \int_{M_{\pi}^2}^{\infty} ds \, rac{\hat{K}(s)}{s} \sigma(e^+e^- o \gamma^* o ext{hadrons})$$

$a_{\mu}^{\text{LO-HVP}}$ from lattice QCD

- Use time-momentum representation [Bernecker & Meyer '11]
- Compute current-current correlator

$$C(t)=rac{1}{3}\sum_{\mu=1,2,3}ig\langle J_{\mu}(t)J_{\mu}(0)ig
angle$$

- Integrate with kernel function K(t)
- Above $Q_{max}^2 = 3 \,\text{GeV}^2$, use perturbation theory

Lattice approach

$$a_{\mu}^{ ext{LO-HVP}} = lpha^2 \int_0^\infty K(t) C(t) dt$$

Hadronic vacuum polarisation

- Until now, lattice uncertainty larger than dispersive
- Results mostly consistent with both dispersive approach and experiment
- New, sub-percent lattice determination [BMWc '20]
- First lattice calculation with errors comparable to data-driven determinations

Three years of progress

- 3.4× increase in precision over our earlier work [BMWc '17]
- Many improvements needed to attain this precision
 - Statistical noise
 - Scale setting
 - Finite size effects
 - Continuum limit
 - Isospin breaking
- Made possible thanks to the work of many groups around the world

Key improvements

- Five major sources of error in our previous work
- Dominant error from finite size effects
- Once this was reduced, four other sources of error became important
- Significant reduction in all five for our recent publication

Statistical noise

Statistical noise in u/d contributions grows exponentially at large t

- Algorithmic improvements (EigCG, solver truncation [Bali et al 09], all mode averaging [Blum et al 13]) to generate more statistics
- Exact treatment of IR modes to reduce long-distance noise (low mode averaging [Neff et al 01, Giusti et al 04, ...])
- Rigorous upper/lower bounds on long-distance contribution [Lehner 16, BMWc 17]

Scale setting

- Naïvely, relative errors in lattice spacing are doubled
- Requires permille determination of scale
- Use Ω⁻ baryon mass computed with 0.2% error
 - Partially subsumed into statistical error
- Wilson-flow scale [Lüscher 10, BMWc 12] for isospin decomposition

Finite-size effects

- Even in our large volumes ($L \ge 6.1 \text{ fm}$, $T \ge 8.7 \text{ fm}$), exponentially suppressed FV effects are significant
- One-loop SU(2) χ PT [Aubin et al 16] suggests $\sim 2\%$ effect
- Perform dedicated FV study with even larger volumes: (~ 11 fm)⁴
- χ PT & other models validated by comparing to lattice data
- Use two-loop χ PT [Aubin et al 20] for tiny, residual correction

Dedicated finite-volume study

- Perform continuum extrapolation at reference volume
- Apply finite-size corrections in continuum
- Taste breaking distorts finite-size effects
- Large volumes only practical with coarse lattices (a = 0.112 fm)
- Perform dedicated simulations with reduced taste breaking
 - DBW2 action [Takaishi et al '96] and 4HEX smearing [Capitani et al '06] to suppress UV fluctuations
 - Tune pion masses with HMS mass instead of Goldstone pion

Dedicated finite-volume study

 18.1 ± 2.4

Finn M. Stokes

BMWc HVP lattice

FCCP 2021 11 / 23

×10⁻¹⁰

Model comparison

- Two models for finite L & T
 - Chiral perturbation theory to two loops
 - Meyer-Lellouch-Lüscher-Gounaris-Sakurai model [Bernecker & Meyer '11] (MLLGS), a phenomenological model of interacting two-pion states
- Two more models for finite L (but not T)
 - Generic field-theory approach [Hansen & Patella '19, '20] (HP) relates the finite-size effect to $F_{\pi}(k)$
 - Rho-pion-gamma model [Chakraborty et al '17] (RHO) incorporates the $\rho(770)$ resonance directly into a χ PT-like framework
- Compare finite L corrections for reference volume in infinite-T limit
- All four models agree within $\sim 2.5 \times 10^{-10}$

NNLO χ PT	16.7	×10 ⁻¹⁰
MLLGS	18.8	×10 ⁻¹⁰
HP	17.7	×10 ⁻¹⁰
RHO	16.2	×10 ⁻¹⁰

- Estimated I = 0 effect: 0.0(0.6)
- Estimated isospin-breaking correction: 0.0(0.1)

Finn M. Stokes

Continuum limit

- Need controlled continuum ($a \rightarrow 0$) limit
- Perform all calculations at 6 lattice spacings: 0.134fm-0.064fm
- Statistical error at finest a reduced from 1.9% to 0.3%!
- Improve continuum limit w/ EFTs and phenomenological models (SRHO) [Sakurai 60, Jegerlehner et al 11, Chakraborty et al 17, BMWc 20]
 - 2-loop SU(2) S_XPT for systematic error [Bijnens et al 99, BMWc 20]
 - Models validated with data

Lattice spacing dependence

- Naïvely, staggered scaling is a²
- Can be modified by logarithmic corrections

$$a^2 \, lpha_s^{\Gamma} ig(rac{1}{a} ig) \sim rac{a^2}{\log(a)^{\Gamma}}$$

- Systematic from comparing Γ = 0 & 3
- a_{μ} still non-linear
- Only apparent with high precision data
- Taste-splitting in loops
- Effectively a combined chiral-continuum limit

Two types of power series

1
$$A_0 + A_1 \left[a^2 \right] + A_2 \left[a^2 \right]^2$$

2 $A_0 + A_1 \left[a^2 \alpha_s^3 \left(\frac{1}{a} \right) \right] + A_2 \left[a^2 \alpha_s^3 \left(\frac{1}{a} \right) \right]^2$

Taste improvement

Incorporate taste splitting into models to describe taste violation:

- I Rho-pion-gamma model [Jegerlehner, Szafron '11; HPQCD '16] (SRHO) → depends on rho parameters
- 2 Chiral perturbation theory [Lee, Sharpe, Van de Water, Bailey] ($S\chi$ PT) \rightarrow depends on one LEC (I_6)

- At large euclidean times, both models reproduce lattice artefacts well
- These are not fits
- S_XPT breaks down below 1.3 fm
 - Resonance contribution is missing
- SRHO seems to work well over the whole range

Continuum extrapolation

- Reduced lattice artefact and linear a² dependence
- Central value from SRHO improvement. For systematic errors:
 - 1 Change starting point of improvement $t = 0.4 \rightarrow 1.3$ fm
 - 2 Skip coarse lattices & change fit form (linear, quadratic, cubic)
 - 3 Interchange $\Gamma = 0$ and $\Gamma = 3$
 - 4 Replace SRHO by NNLO S χ PT above 1.3 fm

Isospin breaking

• $\mathcal{O}(\alpha)$ and $\mathcal{O}(\delta m = m_d - m_u)$ effects are $\mathcal{O}(1\%)$

- Include all relevant isospin-breaking effects
- Compute effects on all quantities needed
 - 1 Correlator C(t)
 - 2 Meson masses M_{π} , M_{K}
 - 3 Scale setting W₀

Error budget

- Thorough & robust determination of statistical & systematic errors
- Statistical error: resampling methods
- Systematic error: extended frequentist approach [BMWc 08, 14]
 - Hundreds of thousands of different analyses of correlation functions
 - Weighted by AIC weight
 - Use median of distribution for central values & 68% confidence interval for total error

Window Observable

- Most systematics come from short or long distances
- Idea: Perform cross-check by restricting correlator to window 0.4–1.0 fm [RBC '18]

Systematic errors:

- 1 SRHO vs no improvement
- 2 Skip coarse lattices, and linear, quadratic, or cubic

3
$$\Gamma = 0$$
 or 3

Conclusion

- Significant improvement in
 - Statistical noise
 - Scale setting
 - Finite size effects
 - Continuum limit
 - Isospin breaking
- Reduction in total error from 2.7% to 0.8%
- Shows surprising agreement with no-new-physics scenario
- Important to have lattice cross-checks
 - Particularly of a_{µ,win}
- Important to understand disagreement with R-ratio

