Introduction to Machine Learning:
Lecture 111

Michael Kagan

SLLAC

INFEN School of Statistics 2022
May 19, 2022

The Plan /

e JLecture 1
— Introduction to Machine Learning fundamentals

— Linear Models

* Lecture 2
— Neural Networks
— Deep Neural Networks
— Convolutional, Recurrent, and Graph Neural Networks

* Lecture 3
— Unsupervised Learning
— Autoencoders
— Generative Adversarial Networks and Normalizing Flows

Beyond Regression and Classification

Beyond Regression and Classification /

* Not all tasks are predicting a label from features, as in
classification and regression

* May want / need to explicitly model a high-dim. signal
— Data synthesis / simulation
— Density estimation
— Anomaly detection
— Denoising, super resolution

— Data compression

* Often don’t have labels = Unsupervised Learning

* Often framed as modeling the lower dimensional
“meaningful degrees of freedom” that describe the data

5

Modeling Data and Meaningful Degrees of Freedom

°
W

Vv

Original space &

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

6

Modeling Data and Meaningful Degrees of Freedom

/\

Latent space &

[}
S 9

A4

Original space &

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

7

Modeling Data and Meaningful Degrees of Freedom

Latent space &

Vv

Original space &

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

8

Modeling Data and Meaningful Degrees of Freedom

ST

Latent space &

WV

Original space &

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Autoencoders

Meaningful Representations A

* How can we find the “meaningtul degrees of
freedom” in the data?

* Dimensionality Reduction / Compression

— Can we compress the data to a latent space with smaller
number of dimensions, and still recover the original data
from this latent space representation?

— Latent space must encode and retain the important
information about the data

— Can we learn this compression and latent space

Autoencoders /

* Autoencoders map a space to 1itself through a compression,
x — z — X, and should be close to the identity on the data

— Data: x € X Latent space: z € F

— Encoder: Map from X to a lower dimensional latent space F

 Parameterize as neural network fg(x) with parameters 6

— Decoder: Map from latent space F back to data space X

* Parameterize as neural network gy, (z) with parameters 1

Autoencoders /

* Autoencoders map a space to 1itself through a compression,
x — z — X, and should be close to the identity on the data

— Data: x € X Latent space: z € F

— Encoder: Map from X to a lower dimensional latent space F

 Parameterize as neural network fg(x) with parameters 6

— Decoder: Map from latent space F back to data space X

* Parameterize as neural network gy, (z) with parameters ¥

* What is the latent space? What are f(x) and g(z)?

— Choose a latent space dimension D

— Learn mappings f(x) to representation of size D,

and back with g(z)

Autoencoder Loss /

* Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

1 2
L(6,) = NZHxn — gy (fo (xn)) ||

* Minimize this loss over parameters ot encoder (0)

and decoder ().

Autoencoder Loss /

* Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

1 2
L(6,) = NZHxn — gy (fo (xn)) ||

* Minimize this loss over parameters ot encoder (0)

and decoder ().

* NOTE:if fg(x) and g(z) are linear, optimal
solution given by Principle Components Analysis

Autoencoder Mappings

.

fis

2 Latent space #

Original space &

* If the latent space 1s of lower dimension, the

autoencoder has to capture a “good”
parametrization, and in particular dependencies
between components

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Autoencoder A

X =— |f@ -»f(z)-»-»z» -» g = g — X

* When fj and g, are multiple neural network layers,

can learn complex mappings between X and F
— fp and gy, can be Fully Connected, CNNs, RNNS, etc.

— Choice of network structure will depend on data

Deep Autoencoder /

X =—— fg - 7 = gl/) —_— X

/

* When fg and g,, are multiple neural network layers,

can learn complex mappings between X and F
— fp and gy, can be Fully Connected, CNNs, RNNS, etc.

— Choice of network structure will depend on data

S

Deep Convolutional Autoencoder

X (original samples)

O X
QS N
N J
s
s T —
Fd N
/7\1
o0
O\ T
Ratanl
N O
N o~ o

" Jfp and g,, are each

16)

g o f(X) (CNN, d

5 convolutional layers

SEV N
L) «F %
N J
&M
& T —
> d N
/7\\
o0
QU T

N OQ
N O3

16)

g o f(X) (PCA, d

S i
Q&N
e g
e
ST -
> @ ™M

g o Q0
o:Jq

~NO9Q
™~ O T

Fleuret, Deep Lear

https://fleuret.org/dlc/

Interpolating in Latent Space

Fleuret, Deep Learning Course

a €[0,1], &(x,x';a) =g((1 - a)f(x) +af(x)).

£(x)
s

— f(x')

Latent space &

Original space &

Autoencoder interpolation (d = 8)

VDDV 999 949
OOOOOOOOGCGOGOG
777777222222

| [{ T T §§5§6§6§666
AN RN A A

3888855555055

https://fleuret.org/dlc/

Can We Generate Data with Decoder? A

* Can we sample 1n latent space 1
and decode to generate data? T /—\

y —

Latent space &

Original space &

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder? /

* Can we sample 1n latent space 1
and decode to generate data? T /—\

=t Latent space &

Original space &

* What distribution to sample

from 1n latent space? sy SABIEId=16)

_ - - ‘??251?54305'5/
Try Gau;smn (\leth mean and 023 629%5%53146
variance rrom data :6}5/9979&3>’35

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder? A

* Can we sample 1n latent space 1
and decode to generate data? T /—\

=t Latent space &

Original space &

* What distribution to sample

from 1n latent space? sy SABIEId=16)

_ - - R 23233334
Try Gau;smn (\leth mean and 0236239553146
variance rrom data :6}99979&3f35

* Don’t know the right latent space density

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Generative Models

Generative Models A

e (Generative models aim to:

— Learn a distribution p(x) that explains the data

— Draw samples ot plausible data points

* Explicit Models
— Can evaluate the density p(x) of a data point x

* Implicit Models

— Can only sample from p(x), but not evaluate density

Denoising Autoencoders A

e Learn a mapping from corrupted data space X
back to original data space

— Mapping ¢,, (i) =X

— ¢, will be a neural network with parameters w

e J.oss:

1
L =2 [l = b G + €0
/

Perturbation, e.g. Gaussian noise

S

Denoising Autoencoders Examples

4)

b
~
B
[J]
=
Q
=]
=
e
(e}
)

Reconstructed

OSSN

ning Course

Fleuret, Deep Lear

https://fleuret.org/dlc/

.

Autoencoders Examples
* Autoencoder learns the

1SIng

Deno

average behavior

e What if we care about

these variations?

e Can we add a notion of

variation 1n the
autoencoder?

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

From Deterministic to Probabilistic Autoencoder A

* Consider probabilistic relationship between data and
latent variables

x,z~p(x,z) =plx|z)p(z)

* Autoencoding

x - q(z]x) = 27 p(x|z)

— Choose simple prior distribution

— Encoder: Learn what latents can produced data: q(z|x)

— Decoder: Learn what data is produced by latent: p(x|z)

Autoencoder A

f A
\\
/] s " *
k / g *
P 2 Latent space #

WV

Original space &

Variational Autoencoder

y —

WV

Original space &

N

7

Latent space #

Variational Autoencoder /

O ——
N\ O —
- W

o

Draw sample

™
g /

P 2 Latent space #

WV

Original space &

. Encoding A

* Typical encoder maps input x to “average” point in latent space

f(x) = u(x)

| ﬁ\\b

y —

>

Latent space #

Original space &

. Encoding A

* A VAE Encoder has two outputs: mean & variance tfunction

fq) (X) — {Mlp (X), 0'1/) (X)} 1) are parameters of the NN

f A

— Gaussian Density
N
/\

Draw sample

N
7

Latent space #

Original space &

. Encoding A

* A VAE Encoder has two outputs: mean & variance tfunction

f¢(x) — {Mw(X),O}/)(X)} 1) are parameters of the NN
* What is the probability of a point in latent space?

py(zlx) = N(z | 11y (x), oy ()

— Gaussian Density
N
/\

Draw sample

N
7

Latent space #

Original space &

. Encoding A

* A VAE Encoder has two outputs: mean & variance tfunction

f¢(x) — {Mw(X),O}/)(X)} 1) are parameters of the NN
* What is the probability of a point in latent space?
py(z|x) = N(z | 1ty (x), 0y (x))

* How do we draw a sample in latent space?

z = oy (x) * € + 1y, (x) e~N(0,1) Re-parameterization trick
f /
/\M — Gaussian Density
N

g

/\ N

Draw sample
— Latent space #

Original space &

. Encoding A

* A VAE Encoder has two outputs: mean & variance tfunction

f¢(x) — {M¢(X), O'w(X)} 1) are parameters of the NN
* What is the probability of a point in latent space?
py(z|x) = N(z | 1ty (x), 0y (x))

* How do we draw a sample in latent space?

Z = 0y (x) * € + Wy (x) 6~N(O, I) Re-parameterization trick
f N

NOTE: — Gaussian Density
Could have chosen N z M
different density and
use NN to predict }aw e
params... | S

— Latent space &
As long as we can .

sample using

re-parameterization Original space 2

\ Decoding /

* Same approach, VAE decoder has two outputs
Yo (Z) — {,Ug (Z), Op (Z)} 0 are parameters of the NN

e Likelihood of an observation x

po(x|z) = N(x | ug(2),09(2))

Ve
Gaussian Density
N
g

N

Draw sample

— Latent space

Original space &

Variational Autoencoder

S

\
/

— Hlp(x)

— 0y (X)

— z=€e*x0oy(x) + py(x) —

I

Sample:
e~N(0,1)

\

9o

/

— Ug(2)

— 09 (2)

What is the Loss for Training? A

o —
N e
. W

o

Draw sample

N
7

Latent space #

y —7

WV

Original space &

Reconstruction Loss: Maximize expected likelihood of
decoding x from encodings of x

1
Lyeco = IE':z~q(z|x) llog p(x|2)] = N z logp(x|z;)

zi~q(z|x)

Variational Autoencoder Training Loss

S

1
Lyeco = N Zz~q¢(z|x) log pe (x|z;)

e Note that

(x — po (Z))Z

logp(x|z) = —logag(z) — 50 (2)? + const

This looks almost exactly like the Autoencoder Loss

Which was a Mean Squared Error (x — f(g(x))2

Here we have z = z,,(x)

Variational Autoencoder Training Loss /

1
* Lieco = NZz~q¢(z|x) log pe (x|z;)

* What about encoder? How do we make sure 1t doesn’t
collapse around each point (1.e. only predict mean)

Variational Autoencoder Training Loss A

1
Lyeco = NZz~q¢(z|x) log pe (x|z;)

* Use prior p(z) for the latent space distribution,
need to ensure the encoder is consistent with prior

f y

@

y —

Latent space #

Original space &

Variational Autoencoder Training Loss A

1
* Lyeco = NZz~q¢(z|x) log pg (x[z;)

* Use prior p(z) for the latent space distribution,
need to ensure the encoder is consistent with prior

e Constrain difference between distributions with

Rullback—-Leibler divergence

q(z|x) q(z|x)
p(z)

p(z)

Dkila(z|x)p(2)] = Eq(z|x) |log dz

]= [Gzl tog

— Dk1[gqlp] = 0 andisonly 0 whenq =p

Variational Autoencoder Training Loss A

1
* Lieco = NZz~q¢(z|x) log pe (x|z;)

* Use prior p(z) for the latent space distribution,
need to ensure the encoder is consistent with prior

* VAE full objective

rgf;lpr(H P) = max [Eqw(zlx) [log pg(x|2)] — DKL[qw(le)lp(Z)]]

Reconstruction Loss Regularization of Encoder

Examples

=)

-VAE

rm .
l‘.

YTPL,
Lved.
R REERF
' FRETY MMH

Pwee=s WmEmEEs

BEEOTY desene
AAIIII Jaases

mmewmewee "(‘(ﬂ-“

(c) leg style (b) width (a) azimuth

-
=
°
e
©
e
o
=
L£
R
=1
E
N
<
—
©
S

(b) emotion (smile)

(c) hair (fringe)

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Examples

(a) (b)

SMILES input O

cleceec]

(CO00000)
[OO000)
500

ENCODER
Neural Network

CONTINUOUS 5
MOLECULAR ; :
REPRESENTATION flz) ! 5
(Latent Space) - E i : E
PROPERTY E ' E
PREDICTION :
DECODER

Neural Network

SMILES output ©

cleccec

Most Probable Decoding
argmax p(*z)

Design of new molecules with desired chemical properties.
(Gomez-Bombarelli et al, 2016)

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md

Another Way To Do Generative Modeling... /

Another Way To Do Generative Modeling... A

* Formulate as a two player game

* One player tries to output data that looks as real
as possible

* Another player tries to compare real and fake data

e In this case we need:

1. A generator that can produce samples

2. A measure of not too far from the real data

Generative Adversarial Network (GAN) A

* Generator network gg(z) with parameters 6

— Map sample from known p(z) to sample in data space

x =gg(z) z~p(2)

— We don’t know what the generated distribution pg () is,
but we can sample from it = Implicit Model

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Generative Adversarial Network (GAN) A

* Generator network gg(z) with parameters 6

— Map sample from known p(z) to sample in data space

x =gg(z) z~p(2)

— We don’t know what the generated distribution pg () is,
but we can sample from it = Implicit Model

* Discriminator Network dg(x) with parameters ¢

— Classifier trained to distinguish between real and fake data
— Classitier is learning to predict p(y = real | x)

— This classifier 1s our measure of not too far from the real data

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

/.

vV

“reali'

What D wants

“fa kell

N4

* Generator’s goal 1s to produce fake data that tricks
the discriminator to think 1t 1s rea/ data

* Discriminator wants to miss-classity data as real or
tfake as little as possible

* The setup 1s adversarial because the two networks
have opposing objectives

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

GAN Objective A

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)

GAN Objective A

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)

* For a fixed generator, can train discriminator by
minimizing the cross entropy
N
1

L(¢) = — 557 D |vilogds(w:) + (1=) log(1 — dy (&))|

GAN Objective

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)

* For a fixed generator, can train discriminator by
minimizing the cross entropy

N

1 " ~
5N [yz log d¢(xi) + (1 — g;) log(1 — dﬁb(xi))}
1=1

L() = -

_ _% > [log dg (i) +log(1 — dg(ge(2:)))}

1=1

GAN Objective A

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(2;),y; = 0} with: z;~p(2)

* For a fixed generator, can train discriminator by
minimizing the cross entropy

D) = — 50 O [wilogda(e) + (1—) log(1 — dy (i))
= —% Z [log dg(x;) + log(1 — dg(ge(2i)))}

= —Forpyon(2) {log d¢(az)} —E.p2) {log(l — dy(g0(2)))}

GAN Objective A

* However, generator 1sn’t fixed... have to train it!

GAN Objective %

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)))

GAN Objective A

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)))

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low

GAN Objective A

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)))

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low

* So our optimization goal becomes:

0" = arg m@in max Vo, 0)

GAN Objective A

* However, generator 1sn’t fixed... have to train it!

* Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)))

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low

. . . NOTE: can prove that
* So our optimization goal becomes: minimax solution

corresponds to generator
that perfectly reproduces

9* — al“g mln 111 aX ‘/v(¢7 9) data distribution
9 ¢ qo*(X) = Paata(x)

GAN Training Goodfellow et. al. 2014/

* Alternating Gradient descent to solve the min-max problem:

oV 3(dg) dgs
Yad ag 06
oV d(dg)
ad do

0« 6—yVeV(p,0) =60 —

¢ —P—yVypV(p,0)=¢—vy

* For each 0 step, take k steps in ¢ to keep discriminator near
optimal

Data distribution
Model distribution

el

e N
L8

T 7 T TN

Poorly fit model After updating D After updating G =~ Mixed strategy equilibrium

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Training Example g

MODEL OVERVIEW GRAPH /’ LAYERED DISTRIBUTIONS METRICS
Gradients 1 . [l Discriminator's Loss
l{,_u___uugg_m‘__u____“%‘] [l Generator's Loss
| J 08 | —
| | 06
| “ 04 |
i ‘ 0.2
! Real | |
I
- ' i 0
=== N | . 0 2000 4000
\ ! Discriminator))
\.\ ; loss [KL Divergence (by grid)
P JS Divergence (by grid)
Fake /)
/ 1.0
N L ,,/_'___\ 0.8 |
e \
g \ 0.6 |
a e | -
I Samples Discriminator Prediction of } T 04 |
1 Samples | loss 0.2 |
! : 0
i { 0 2000 4000
| |
I I
| |
] I
E“_ ______________________________________ J ! Each dot is a 2D data sample: real samples; fake samples.

Background colors of grid cells represent discriminator's classifications.

Gradients Samples in green regions are likely to be real; those in purple regions likely fake.

Opacity encodes density: darker purple means more samples in smaller area.

Pink lines from fake samples represent gradients for generator.
& This sample needs to move upper right to decrease generator's loss.

GAN Lab Demo

https://poloclub.github.io/ganlab/

Examples

Goodfellow et. al., 2014

Not so good

Goodfellow 2016

Radford et al, 2015

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Challenges A

* Oscillations without convergence: unlike standard loss
minimization, alternating stochastic gradient descent has
no guarantee of convergence.

* Vanishing gradients: if classifier 1s too good, value
function saturates = no gradient to update generator

* Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution modes.

* Difficult to assess performance, when are generated data
good enough?

bd - " n
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Slide credit: G. Louppe Mode collapse (Metz et al, 2016)

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md

Improving GANS

* Standard GANS compare real
and take distributions with
Jensen-Shannon Divergence,
“vertically”

* Wasserstein-GAN (Arjovsky
et al, 2017) compares
“horizontally” with
Wasserstein-1 distance
(a.k.a. Earth Movers distance)

* Substantially improves

vanishing gradient and mode
collapse problems!

0.40 -
035 -
0.30 -
0.25 -
0.20 -
015 -
0.10 -
0.05 -

0.00 -

0.4

0.2+

(Arjovsky et al, 2017)

— Density of real
— Density of fake

WGAN Critic

— GAN Discriminator |

0.0
~
-0.2} : Vanishing gradients
in regular GAN
-0.4 L= ‘ s ; .
-8 -6 -4 -2 0 2 4 6 8

Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.

As we can see,

the discriminator

ishi

of a minimazr GAN saturates and results in vanis
gradients. Our WGAN critic provides very clean gradients on all parts of the space.

ng

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3

WGAN Examples

i s e L LD
B L e
Iﬁﬂlmllﬂ

ulil&!i

Iﬁﬂﬁllﬂ.

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3

Scaling Up

Latent Latent

ﬁﬁ

.i ! Reals l ' Reals

D

Progressive GAN

Latent

1024x1024

. | Reals
¥

Y
1024x1024

Training progresses

(Karras et al, 2017)

Scaling Up

StyleGAN v2

BigGAN

Applications: Image-to-Image Translation with CycleGAN A

* p(z) doesn’t have to be random noise

* CycleGAN uses cycle-consistency loss in addition to GAN loss
— Translating from A=>B—2> A should be consistent with original A

Monet _ Photos z

Summer _ Winter

ebras T Horses

Photograph Van Gogh

Applications: Text-to-Image Synthesis with StackGAN

70

A small bird A small yellow This small bird

The bird is A bird witha This small with varying bird with a has a white
Text Thisbirdisred shortand mediumorange black bird has shades of black crown breast, light
desc:'xt'on and brown in stubby with bill white body a short, slightly brown with and a short grey head, and
P color, witha yellow on its gray wingsand curvedbilland white underthe black pointed black wings
stubby beak body webbed feet long legs eyes beak and tail
64x64 ¥
GAN-INT-CLS

128x128
GAWWN
256x256

StackGAN-v1

S s

-~ d

Fig. 3: Example results by our StackGAN-vl, GAWWN [29], and GAN-INT-CLS [31] conditioned on text descriptions from CUB test set.

(Zhanget al, 2017)

\ Summary /

* Deep neural networks are an extremely powertul
class of models

* We can express our inductive bias about a system
in terms of model design, and can be adapted to a
many types ot data

* Even beyond classification and regression, deep
neural networks allow for powerful model
schemes such as Variational Autoencoder and
Generative adversarial Networks

72

Gy o o o o o o o o o o o o o o o o o o
B e et

e T
B A S i
L I
e
e M S I T
B e e A e e M A A
S e e
e
B
B e
e
e e e e
e T
B A S i
L I
e
e M S I T
B e e A e e M A A
S e e
e
B
B e
e
e e e e
e T
B A S i
L I
e
e M S I T
B e e A e e M A A
S e e
e
B
B e
e
e e e e
e T
B A S i
L I
e
e M S I T
B e e A e e M A A
S e e
e
B
B e
e
e e e e
e T
B A S i
L I
e
e M S I T
B e e A e e M A A
S e e
e
B
B e
e
e e e e
e T
B A S i
L I
e
e M S I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e T
B A S e
A I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e T
B A S e
A I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e T
B A S e
A I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e e
e M e I T
B e e A e e M A A
S e e
e
B
B e e
e
e e e e
e S T
B A S e
L I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e e
e
e e e e
S T T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e e
e
e e e e
S T T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e T
B A S e
A I
e
e T M e I T
B e A e e M A A
S b e
e
B
B e T
e
e e e e
e S I T
B e R
e I
e
e T M e I T
B e A e e M A A
S e e
e
B
B e T
e
e e e e
e S I T
B e R
e I
e
B L
B B B B B B B B e S R

Modeling High Dimensional Data A

* Must first determine the question we want to ask,
and formulate an appropriate loss function
— Loss function encodes the quality of model prediction

— Parameterize models with neural networks

* WIill have many of the same theoretical and
practical 1ssues as 1n classification and regression

— What 1s the right class and structure of the model
(CNN, RNN, graph, etc.) for the data?

— How do we stably optimize the loss w.r.t. parameters?

.

* Autoencoders learn the latent space, but we don’t
know what 1s the latent space distribution

* Autoencoder prescribes a deterministic
relationship between data space and latent space

* One set of “meaningful degrees ot freedom” can
only describe one data space point

Latent Variable Models %

a0

* Observed random variable x depends on unobserved
latent random variable z

— Interpret z as the causal factors for x

* Joint probability: p(x,z) = p(x|z)p(2)
* p(x|z) is a stochastic generation process from z — x

p(X|Z)p(z)
p(x)

* Inference from posterior: p(z|lx) =

— Usually can’t compute marginal p(x) = [p(x|z)p(z)dz

Autoencoder: Deterministic to Probabilistic A

* Consider probabilistic relationship between data and
latent variables

x,z ~p(x,z) =plx|z)p(z)

/\

Decoding data x Prior over latent space
from latent z

How do we design Encoder and Decoder /

* C(lassification / regression models make single
predictions...

How to model a conditional density p(a|b) ?

* Assume a known form of density, e.g. normal
p(alb) = N (a; u(b),o(b))

— Parameters of density depend on conditioned variable

* Use neural network to model density parameters

p(alb =b;) p(alb=Dby)

Aa(bl)

u(bq) a

@,
I
s
p(alb)

The Decoder A

e Decoder

— Neural network with parameters 6

— Input z = output estimate of Gaussian Ug(z) , gg(2)

* Likelihood of a data point x

(x — Ug (Z))Z

logp(x|z) = —logag(z) — 5 (2)? + const

The Encoder A

* Encoder
— Neural network with parameters i

— Input x = outputs estimate of Gaussian i, (x) , gy, (x)

e For reconstruction loss:

— Need a value of z to evaluate decoder!

— Need to gradient through z to encoder parameters

) qy(zi|x)
max L (6,1) = max i log pp (x[2) - 1°g[p(2)
EiayZ0)

Reparameterization trick A

* For z~pg(2), rewrite z as a function of a random
variable € whose distributions p(€) does not

depend on 6

— Gaussian Example:

z~NWu,0) - z=o*xe+u where e~N(0,1)

e VAE Loss

qy (zi|x)
p(z;)

ng’?px LB, yY) = rg’?px Z)logpg(x|zl- =ex*xay (x) + ,ulp(x)) — log[
e~p(€

Explicit Density Estimation with Normalizing Flows

Explicit Density Estimation A

* In VAE and GAN we can learn to sample from
the distribution...

* Is there a way to learn the explicit density p(x) ?

Reminder: Calculus Change of Variables A

ff(g(x)) a‘zix) dx = [f(uw)du where u = g(x)

Multivariate:
I flg(x) ‘det 29O gx = [f(u)du where u = g(x)

dx
Determinant of Jacobian
of the transformation

— Change of volume

Change of Variables in Probability A

* If f is continuous, invertible, differentiable, and

x = f71(2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

KUz

1 HX 5

et (222)

Z

The term accounts for the local stretching of space

Change of Variables with Neural Networks A

* If f is continuous, invertible, differentiable, and

x = f71(2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

* x = data we want to model, Z = known noise

* ¢g(z) will be a neural network with parameters 6

— Must be continuous, 1nvertible, differentiable

* Output of ¢ is a potential sample x

— Learn the right ¢: adjust weights 6 to maximize data
probability (formula above)

Change of Variables with Neural Networks A

* If f is continuous, invertible, differentiable, and

x = f71(2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

* x = data we want to model, Z = known noise

¢ (z) neural network ®~1(x) inverse
— Input = asample of noise <= — Input = asample X
— QOutput = a sample of X — Qutput = a sample of noise

* Calculate the probability of a sample using the formula above

Normalizing Flows

.

4

20N N

Slide credit: G. Kanwar

¢ (2)

Px(x) = p,(2)

dp(z)
det (iz

p(x)

W

;

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

A

<

p(2) A

Easily sampled

Slide credit: G. Kanwar

P(2) -

Invertible
&
Tractable
Jacobian

p(x)

W

Approximates
desired dist.

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

4)
Invertible
¢ (Z) - &

z Tractable
\ 4 kJacobian 5 ,
HE PN BRSVS
. g‘] 8; —— il &n
- —
. J
Y

Many simple layers
composed to produce ¢

Approximates

Easil led
aslly sample desired dist.

Slide credit: G. Kanwar

/e

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

flnvertible\
7 ‘;. Tractable
S 4 Jacobian Y
p(x)
p(z) M g‘ - " 8
1 _

ApPproximates

Easily sampled
y P desired dist.

Slide credit: G. Kanwar

S

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

¢~ (x)
X "z
| (2) |
: - :
| Pz (67 (X)) ‘det <a¢ dx(x)> |
px(x) < ~ pL(2)

-1
p,(z) |det (ad)(Z))

dz

Normalizing Flows Training

e LLearn 68 with maximum likelihood

max p(x) = maxp,(¢g " (x))

— Gradient descent on 6

det(

0y (x)

dx

— Find transformation s.t. data 1s most likely

e Benefits once trained

— Can evaluate p(x) for any point X

— Can generate “new” data points

* Sample noise: z~p(z)

* Transform:

P(z) = x

|

Example Normalizing Flow: Real NVP A

X1
e Data vector x = ()

Functions f() and g()

* Transformation are neural networks
¢(2): (2) - (izgg) - (Zz * f(le)1+ 9(21))
» 1 _ () 1
¢~ (x) (zz) - <¢2 1(3;)) B ((Xz g(x1))/f(x1))

Jacobian is

/ lower triangular
1 0

dp(z) _ 0
det(o)-det((‘ZZZEZ)) f(z 1)> f(z2)

e Determinant:

Example Normalizing flow

94

Standard Normal

60 -

Standard Normal

60

2.0 1

1.5 1

Samples from p(x;, x3)

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
X1

p(x1)

0.35 4

0.30 A

0.25 A

0.20 1

0.15 1

0.10 1

0.05 A

0.00

p(x2)

0.35 A

0.30 A

0.25 A

0.20 A

0.15 1

0.10 A

0.05 A

0.00

Applications: Sampling in Lattice QCD A

- o - Parameterize flow using Real
— . - - -

NVP Coupling Iayers - Each layer contains
¢ arbitrary neural nets

Training step ‘\

Desired accuracy?

Draw samples from model

| W
Compute loss function

| Save trained
Gradient descent model
\

S
S g L

—— Markov chain using
4 B R 3 samples from model E

generating samples is
"embarrassingly parallel"

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

