
Introduction to Machine Learning:
Lecture III

Michael Kagan

SLAC

INFN School of Statistics 2022
May 19, 2022

The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows

2

Beyond Regression and Classification

3

Beyond Regression and Classification

• Not all tasks are predicting a label from features, as in
classification and regression

• May want / need to explicitly model a high-dim. signal
– Data synthesis / simulation
– Density estimation
– Anomaly detection
– Denoising, super resolution
– Data compression
– …

• Often don’t have labels à Unsupervised Learning

• Often framed as modeling the lower dimensional
“meaningful degrees of freedom” that describe the data

4

Modeling Data and Meaningful Degrees of Freedom 5

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 6

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 7

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Modeling Data and Meaningful Degrees of Freedom 8

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Autoencoders

9

Meaningful Representations

• How can we find the “meaningful degrees of
freedom” in the data?

• Dimensionality Reduction / Compression
– Can we compress the data to a latent space with smaller

number of dimensions, and still recover the original data
from this latent space representation?

– Latent space must encode and retain the important
information about the data

– Can we learn this compression and latent space

10

Autoencoders

• Autoencoders map a space to itself through a compression,
𝑥 → 𝑧 → $𝑥, and should be close to the identity on the data

– Data: 𝑥 ∈ 𝒳 Latent space: z ∈ ℱ

– Encoder: Map from 𝒳 to a lower dimensional latent space ℱ
• Parameterize as neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space ℱ back to data space 𝒳
• Parameterize as neural network 𝑔" 𝑧 with parameters 𝜓

11

Autoencoders

• Autoencoders map a space to itself through a compression,
𝑥 → 𝑧 → $𝑥, and should be close to the identity on the data

– Data: 𝑥 ∈ 𝒳 Latent space: z ∈ ℱ

– Encoder: Map from 𝒳 to a lower dimensional latent space ℱ
• Parameterize as neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space ℱ back to data space 𝒳
• Parameterize as neural network 𝑔" 𝑧 with parameters 𝜓

• What is the latent space? What are 𝑓(𝑥) and g(𝑧)?
– Choose a latent space dimension D
– Learn mappings 𝑓(𝑥) to representation of size D,

and back with g(𝑧)

12

Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁
*
!

𝑥! − 𝑔" 𝑓# 𝑥!
$

• Minimize this loss over parameters of encoder (𝜃)
and decoder (𝜓).

13

Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁
*
!

𝑥! − 𝑔" 𝑓# 𝑥!
$

• Minimize this loss over parameters of encoder (𝜃)
and decoder (𝜓).

• NOTE: if 𝑓# 𝑥 and 𝑔" 𝑧 are linear, optimal
solution given by Principle Components Analysis

14

Autoencoder Mappings

• If the latent space is of lower dimension, the
autoencoder has to capture a “good”
parametrization, and in particular dependencies
between components

15

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Autoencoder 16

𝑥 𝑧 #𝑥𝑓(") 𝑔($)

• When 𝑓! and 𝑔" are multiple neural network layers,
can learn complex mappings between 𝒳 and ℱ
– 𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

𝑓(%) 𝑓($) 𝑔(%) 𝑔(")

Deep Autoencoder 17

𝑥 𝑧 #𝑥𝑓! 𝑔"

• When 𝑓! and 𝑔" are multiple neural network layers,
can learn complex mappings between 𝒳 and ℱ
– 𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

Deep Convolutional Autoencoder 18

Fleuret, Deep Learning Course

𝑓! and 𝑔" are each
5 convolutional layers

https://fleuret.org/dlc/

Interpolating in Latent Space 19

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder? 20

• Can we sample in latent space
and decode to generate data?

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder? 21

• Can we sample in latent space
and decode to generate data?

• What distribution to sample
from in latent space?
– Try Gaussian with mean and

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Can We Generate Data with Decoder?

• Don’t know the right latent space density

22

• Can we sample in latent space
and decode to generate data?

• What distribution to sample
from in latent space?
– Try Gaussian with mean and

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Generative Models

23

Generative Models 24

• Generative models aim to:
– Learn a distribution 𝑝(𝑥) that explains the data
– Draw samples of plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of a data point x

• Implicit Models
– Can only sample from 𝑝(𝑥), but not evaluate density

Denoising Autoencoders

• Learn a mapping from corrupted data space 0𝒳
back to original data space

–Mapping 𝜙' &𝒳 = 𝒳
– 𝜙' will be a neural network with parameters 𝑤

• Loss:

L =
1
𝑁
*
!

𝑥! − 𝜙%(𝑥! + 𝜖!)

25

Perturbation, e.g. Gaussian noise

Denoising Autoencoders Examples 26

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Denoising Autoencoders Examples 27

Fleuret, Deep Learning Course

• Autoencoder learns the
average behavior

• What if we care about
these variations?

• Can we add a notion of
variation in the
autoencoder?

https://fleuret.org/dlc/

From Deterministic to Probabilistic Autoencoder 28

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥
#$%&'(

𝑧 → 𝑝(𝑥|𝑧)

– Choose simple prior distribution

– Encoder: Learn what latents can produced data: 𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent: 𝑝(𝑥|𝑧)

• Consider probabilistic relationship between data and
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

Autoencoder 29

*

⋆

*
x

Variational Autoencoder 30

*

⋆

*
x

Variational Autoencoder 31

*

⋆

Draw sample*
x

Encoding 32

• Typical encoder maps input 𝑥 to “average” point in latent space

𝑓 𝑥 = 𝜇(𝑥)

• A VAE Encoder has two outputs: mean & variance function

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎! 𝑥 }

• What is the probability of a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧 𝜇! 𝑥 , 𝜎! 𝑥)

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 𝜖~𝑁(0, 𝐼)

Encoding 33

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎! 𝑥 }

• What is the probability of a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧 𝜇! 𝑥 , 𝜎! 𝑥)

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 𝜖~𝑁(0, 𝐼)

Encoding 34

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

Encoding 35

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎! 𝑥 }

• What is the probability of a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧 𝜇! 𝑥 , 𝜎! 𝑥)

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 𝜖~𝑁(0, 𝐼)

Encoding 36

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

NOTE:
Could have chosen
different density and
use NN to predict
params…

As long as we can
sample using
re-parameterization

• A VAE Encoder has two outputs: mean & variance function

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎! 𝑥 }

• What is the probability of a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧 𝜇! 𝑥 , 𝜎! 𝑥)

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 𝜖~𝑁(0, 𝐼)

Decoding 37

• Same approach, VAE decoder has two outputs
𝑔(𝑧 = {𝜇(𝑧 , 𝜎(𝑧 }

• Likelihood of an observation 𝑥
𝑝(𝑥 𝑧 = 𝑁 𝑥 𝜇(𝑧 , 𝜎(𝑧)

𝜃 are parameters of the NN

Gaussian Density

Variational Autoencoder 38

𝑥 𝑧 = 𝜖 ∗ 𝜎# 𝑥 + 𝜇#(𝑥)𝑓" 𝑔!𝜎"(𝑥)

𝜇"(𝑥)

Sample:
𝜖~𝑁(0, 𝐼)

𝜎!(𝑧)

𝜇!(𝑧)

What is the Loss for Training? 39

*

⋆

Draw sample*
x

Reconstruction Loss: Maximize expected likelihood of
decoding 𝑥 from encodings of 𝑥

𝐿#$%& = 𝔼'~)('|,) log 𝑝 𝑥 𝑧 ≈
1
𝑁

3
'.~)('|,)

log 𝑝 𝑥 𝑧.

Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

40

• Note that

log 𝑝 𝑥 𝑧 = −log 𝜎!(𝑧) −
𝑥 − 𝜇! 𝑧

1

𝜎! 𝑧 1 + 𝑐𝑜𝑛𝑠𝑡

This looks almost exactly like the Autoencoder Loss

Which was a Mean Squared Error (𝑥 − 𝑓 𝑔 𝑥 #

Here we have 𝑧 ≡ 𝑧"(𝑥)

Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• What about encoder? How do we make sure it doesn’t
collapse around each point (i.e. only predict mean)

41

Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• Use prior 𝑝 𝑧 for the latent space distribution,
need to ensure the encoder is consistent with prior

42

Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• Use prior 𝑝 𝑧 for the latent space distribution,
need to ensure the encoder is consistent with prior

• Constrain difference between distributions with
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= 0𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

𝑑𝑧

– 𝐷,-[𝑞|𝑝] ≥ 0 and is only 0 when 𝑞 = 𝑝

43

Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• Use prior 𝑝 𝑧 for the latent space distribution,
need to ensure the encoder is consistent with prior

• VAE full objective

max
.,0

𝐿 𝜃, 𝜓 = max
.,0

𝔼10 𝑧 𝑥 log 𝑝.(𝑥|𝑧) − 𝐷,-[𝑞0 𝑧 𝑥 |𝑝(𝑧)]

44

Reconstruction Loss Regularization of Encoder

Examples 45

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Examples 46

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md

Another Way To Do Generative Modeling… 47

Another Way To Do Generative Modeling…

• Formulate as a two player game

• One player tries to output data that looks as real
as possible

• Another player tries to compare real and fake data

• In this case we need:
1. A generator that can produce samples
2. A measure of not too far from the real data

48

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the generated distribution 𝑝!(𝑥) is,
but we can sample from it à Implicit Model

49Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the generated distribution 𝑝!(𝑥) is,
but we can sample from it à Implicit Model

• Discriminator Network 𝒅𝝓(𝒙) with parameters 𝜙
– Classifier trained to distinguish between real and fake data

– Classifier is learning to predict 𝑝 𝑦 = 𝑟𝑒𝑎𝑙 𝑥)

– This classifier is our measure of not too far from the real data

50Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Setup

• Generator’s goal is to produce fake data that tricks
the discriminator to think it is real data

• Discriminator wants to miss-classify data as real or
fake as little as possible

• The setup is adversarial because the two networks
have opposing objectives

51

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

GAN Objective

• Data
– Real data samples: 𝑥2, 𝑦2 = 1

– Fake data samples: <𝑥2 = 𝑔.(𝑧2), <𝑦2 = 0 with: 𝑧2~𝑝(𝑧)

52

GAN Objective

• Data
– Real data samples: 𝑥2, 𝑦2 = 1

– Fake data samples: <𝑥2 = 𝑔.(𝑧2), <𝑦2 = 0 with: 𝑧2~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

53

L(�) = � 1

2N

NX

i=1

h
yi log d�(xi) + (1� ỹi) log(1� d�(x̃i))

i

= � 1

2N

NX

i=1

h
log d�(xi) + log(1� d�(g✓(zi)))

i

= �Ex⇠pdata(x)

h
log d�(x)

i
� Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• Data
– Real data samples: 𝑥2, 𝑦2 = 1

– Fake data samples: <𝑥2 = 𝑔.(𝑧2), <𝑦2 = 0 with: 𝑧2~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

54

L(�) = � 1

2N

NX

i=1

h
yi log d�(xi) + (1� ỹi) log(1� d�(x̃i))

i

= � 1

2N

NX

i=1

h
log d�(xi) + log(1� d�(g✓(zi)))

i

= �Ex⇠pdata(x)

h
log d�(x)

i
� Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• Data
– Real data samples: 𝑥2, 𝑦2 = 1

– Fake data samples: <𝑥2 = 𝑔.(𝑧2), <𝑦2 = 0 with: 𝑧2~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

55

L(�) = � 1

2N

NX

i=1

h
yi log d�(xi) + (1� ỹi) log(1� d�(x̃i))

i

= � 1

2N

NX

i=1

h
log d�(xi) + log(1� d�(g✓(zi)))

i

= �Ex⇠pdata(x)

h
log d�(x)

i
� Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• However, generator isn’t fixed… have to train it!

56

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

57

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

58

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

59

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin
✓

max
�

V (�, ✓)

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

60

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin
✓

max
�

V (�, ✓)

NOTE: can prove that
minimax solution
corresponds to generator
that perfectly reproduces
data distribution

𝑞$∗ 𝑥 = 𝑝%&'&(𝑥)

GAN Training

• Alternating Gradient descent to solve the min-max problem:

𝜃 ← 𝜃 − 𝛾∇.𝑉 𝜙, 𝜃 = 𝜃 − 𝛾
𝜕𝑉
𝜕𝑑

𝜕(𝑑3)
𝜕𝑔

𝜕𝑔.
𝜕𝜃

𝜙 ← 𝜙 − 𝛾∇3𝑉 𝜙, 𝜃 = 𝜙 − 𝛾
𝜕𝑉
𝜕𝑑

𝑑(𝑑3)
𝑑𝜙

• For each 𝜃 step, take 𝑘 steps in 𝜙 to keep discriminator near
optimal

61

equilibrium

Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Training Example 62

GAN Lab Demo

https://poloclub.github.io/ganlab/

Examples 63

Goodfellow et. al., 2014

Radford et al, 2015

Not so good
Goodfellow 2016

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Challenges

• Oscillations without convergence: unlike standard loss
minimization, alternating stochastic gradient descent has
no guarantee of convergence.

• Vanishing gradients: if classifier is too good, value
function saturates à no gradient to update generator

• Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution modes.

• Difficult to assess performance, when are generated data
good enough?

64

Mode collapse (Metz et al, 2016)Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md

Improving GANS

• Standard GANS compare real
and fake distributions with
Jensen-Shannon Divergence,
“vertically”

• Wasserstein-GAN (Arjovsky
et al, 2017) compares
“horizontally” with
Wasserstein-1 distance
(a.k.a. Earth Movers distance)

• Substantially improves
vanishing gradient and mode
collapse problems!

65

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3

WGAN Examples 66

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3

Scaling Up 67

Progressive GAN

Scaling Up 68

BigGAN

StyleGAN v2

Applications: Image-to-Image Translation with CycleGAN 69

• 𝑝(𝑧) doesn’t have to be random noise

• CycleGAN uses cycle-consistency loss in addition to GAN loss
– Translating from AàBàA should be consistent with original A

Applications: Text-to-Image Synthesis with StackGAN 70

Summary

• Deep neural networks are an extremely powerful
class of models

• We can express our inductive bias about a system
in terms of model design, and can be adapted to a
many types of data

• Even beyond classification and regression, deep
neural networks allow for powerful model
schemes such as Variational Autoencoder and
Generative adversarial Networks

71

72

Modeling High Dimensional Data

• Must first determine the question we want to ask,
and formulate an appropriate loss function
– Loss function encodes the quality of model prediction
– Parameterize models with neural networks

• Will have many of the same theoretical and
practical issues as in classification and regression
–What is the right class and structure of the model

(CNN, RNN, graph, etc.) for the data?
– How do we stably optimize the loss w.r.t. parameters?

73

• Autoencoders learn the latent space, but we don’t
know what is the latent space distribution

• Autoencoder prescribes a deterministic
relationship between data space and latent space

• One set of “meaningful degrees of freedom” can
only describe one data space point

74

Latent Variable Models 75

• Observed random variable 𝑥 depends on unobserved
latent random variable 𝑧
– Interpret 𝑧 as the causal factors for 𝑥

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is a stochastic generation process from 𝑧 → 𝑥

• Inference from posterior: 𝑝 𝑧 𝑥 = & 𝑥 𝑧 & >
&(?)

– Usually can’t compute marginal 𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝 𝑧 𝑑𝑧

𝑧 𝑥

Autoencoder: Deterministic to Probabilistic

• Consider probabilistic relationship between data and
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

76

Prior over latent spaceDecoding data x
from latent z

How do we design Encoder and Decoder

• Classification / regression models make single
predictions…

How to model a conditional density 𝑝(𝑎|𝑏) ?

• Assume a known form of density, e.g. normal

𝑝 𝑎 𝑏 = 𝒩 𝑎; 𝜇 𝑏 , 𝜎 𝑏

– Parameters of density depend on conditioned variable

• Use neural network to model density parameters

77

𝜇(𝑏)

𝜎(𝑏)
𝑏

𝑝(𝑎|𝑏 = 𝑏") 𝑝(𝑎|𝑏 = 𝑏%)

𝑎

𝑝(
𝑎|
𝑏)

𝜇(𝑏")

𝜎(𝑏")

The Decoder

• Decoder
– Neural network with parameters 𝜃
– Input 𝑧à output estimate of Gaussian 𝜇((𝑧) , 𝜎((𝑧)

• Likelihood of a data point x

log 𝑝 𝑥 𝑧 = −log 𝜎((𝑧) −
𝑥 − 𝜇(𝑧

)

𝜎(𝑧) + 𝑐𝑜𝑛𝑠𝑡

78

The Encoder

• Encoder
– Neural network with parameters 𝜓
– Input 𝑥à outputs estimate of Gaussian 𝜇*(𝑥) , 𝜎*(𝑥)

• For reconstruction loss:
– Need a value of 𝑧 to evaluate decoder!
– Need to gradient through 𝑧 to encoder parameters

max
.,0

𝐿 𝜃, 𝜓 = max
.,0

F
81~10 𝑧 𝑥

log 𝑝.(𝑥|𝑧2) − log
𝑞0 𝑧2 𝑥
𝑝 𝑧2

79

Reparameterization trick

• For z~𝑝#(𝑧), rewrite 𝑧 as a function of a random
variable 𝜖 whose distributions 𝑝(𝜖) does not
depend on 𝜃
– Gaussian Example:

𝑧~𝒩 𝜇, 𝜎 → 𝑧 = 𝜎 ∗ 𝜖 + 𝜇 𝑤ℎ𝑒𝑟𝑒 𝜖~𝒩(0,1)

• VAE Loss

max
!,"

𝐿 𝜃, 𝜓 = max
!,"

1
$~&($)

log 𝑝! 𝑥 𝑧) = 𝜖 ∗ 𝜎" 𝑥 + 𝜇" 𝑥 − log
𝑞" 𝑧) 𝑥
𝑝 𝑧)

80

Explicit Density Estimation with Normalizing Flows

81

Explicit Density Estimation

• In VAE and GAN we can learn to sample from
the distribution…

• Is there a way to learn the explicit density 𝑝(𝑥) ?

82

Reminder: Calculus Change of Variables

∫ 𝑓 𝑔 𝑥 =>(𝒙)
B𝒙

𝑑𝑥 = ∫ 𝑓 𝑢 𝑑𝑢 where 𝑢 = 𝑔 𝑥

Multivariate:
∫ 𝑓 𝑔 𝒙 det =>(𝒙)

B𝒙
𝑑𝒙 = ∫ 𝑓 𝒖 𝑑𝒖 where 𝒖 = 𝑔 𝒙

83

Determinant of Jacobian
of the transformation

à Change of volume

Change of Variables in Probability
• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝C 𝒙 = 𝑝D 𝒛 det =E 𝒛
B𝒛

GH
where 𝒙 = 𝜙 𝒛

84

The term det $% 𝒛
'𝒛

()
accounts for the local stretching of space

Change of Variables with Neural Networks 85

• 𝑥 = data we want to model, 𝑧 = known noise

• 𝜙!(𝑧) will be a neural network with parameters 𝜃
– Must be continuous, invertible, differentiable

• Output of 𝜙 is a potential sample 𝑥
– Learn the right 𝜙: adjust weights 𝜃 to maximize data

probability (formula above)

• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝C 𝒙 = 𝑝D 𝒛 det =E 𝒛
B𝒛

GH
where 𝒙 = 𝜙 𝒛

Change of Variables with Neural Networks 86

• 𝑥 = data we want to model, 𝑧 = known noise

• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝C 𝒙 = 𝑝D 𝒛 det =E 𝒛
B𝒛

GH
where 𝒙 = 𝜙 𝒛

𝜙GH 𝒙 inverse
– Input = a sample X
– Output = a sample of noise

𝜙 𝒛 neural network
– Input = a sample of noise
– Output = a sample of X

⟺

• Calculate the probability of a sample using the formula above

Normalizing Flows 87

𝑝* 𝒙 = 𝑝+ 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

()

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 88

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 89

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 90

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 91

𝑥 𝑧
𝜙*+(𝑥)

𝜙(𝑧)

𝑝C(𝑥) 𝑝D(𝑧)
𝑝,(𝜙*+ 𝑥) det

𝜕𝜙*+ 𝒙
𝑑𝒙

𝑝, 𝑧 det
𝜕𝜙 𝒛
𝑑𝒛

*+

Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
#
𝑝 𝑥 = max

#
𝑝4 𝜙#

23(𝑥) det
𝜕𝜙#

23 𝒙
𝑑𝒙

– Gradient descent on 𝜃
– Find transformation s.t. data is most likely

• Benefits once trained
– Can evaluate p(x) for any point X
– Can generate “new” data points
• Sample noise: 𝑧~𝑝(𝑧)
• Transform: 𝜙 𝑧 = 𝑥

92

Example Normalizing Flow: Real NVP 93

• Data vector 𝑥 =
𝑥C
𝑥D

• Transformation

𝜙 𝑧 :
𝑥C
𝑥D =

𝜙C(𝑧)
𝜙D(𝑧)

=
𝑧C

𝑧D ∗ 𝑓 𝑧C + 𝑔(𝑧C)

𝜙EC 𝑥 :
𝑧C
𝑧D = 𝜙CEC(𝑥)

𝜙DEC 𝑥
=

𝑥C
𝑥D − 𝑔 𝑥C /𝑓(𝑥C)

• Determinant:

det
𝜕𝜙 𝒛
𝑑𝒛

= det
1 0

𝜕𝜙-(𝑧)
𝑑𝑧+

𝑓(𝑧+)
= 𝑓(𝑧-)

Functions f() and g()
are neural networks

Jacobian is
lower triangular

Example Normalizing flow 94

𝜙(𝑧)

𝑧)

𝑧#

Applications: Sampling in Lattice QCD 95

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

