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The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows
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Beyond Regression and Classification
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Beyond Regression and Classification

• Not all tasks are predicting a label from features, as in 
classification and regression

• May want / need to explicitly model a high-dim. signal
– Data synthesis / simulation
– Density estimation
– Anomaly detection
– Denoising, super resolution
– Data compression
– …

• Often don’t have labels à Unsupervised Learning

• Often framed as modeling the lower dimensional 
“meaningful degrees of  freedom” that describe the data
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Modeling Data and Meaningful Degrees of  Freedom 5

Fleuret, Deep Learning Course

https://fleuret.org/dlc/
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Autoencoders
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Meaningful Representations

• How can we find the “meaningful degrees of  
freedom” in the data?

• Dimensionality Reduction / Compression
– Can we compress the data to a latent space with smaller 

number of  dimensions, and still recover the original data 
from this latent space representation?

– Latent space must encode and retain the important 
information about the data

– Can we learn this compression and latent space
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Autoencoders

• Autoencoders map a space to itself  through a compression, 
𝑥 → 𝑧 → $𝑥, and should be close to the identity on the data

– Data: 𝑥 ∈ 𝒳 Latent space: z ∈ ℱ

– Encoder: Map from 𝒳 to a lower dimensional latent space ℱ
• Parameterize as neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space ℱ back to data space 𝒳
• Parameterize as neural network 𝑔" 𝑧 with parameters 𝜓
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Autoencoders

• Autoencoders map a space to itself  through a compression, 
𝑥 → 𝑧 → $𝑥, and should be close to the identity on the data

– Data: 𝑥 ∈ 𝒳 Latent space: z ∈ ℱ

– Encoder: Map from 𝒳 to a lower dimensional latent space ℱ
• Parameterize as neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space ℱ back to data space 𝒳
• Parameterize as neural network 𝑔" 𝑧 with parameters 𝜓

• What is the latent space? What are 𝑓(𝑥) and g(𝑧)?
– Choose a latent space dimension D
– Learn mappings 𝑓(𝑥) to representation of  size D,

and back with g(𝑧)
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Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data 
and encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁
*
!

𝑥! − 𝑔" 𝑓# 𝑥!
$

• Minimize this loss over parameters of  encoder (𝜃) 
and decoder (𝜓).
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Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data 
and encoded-decoded data

𝐿(𝜃, 𝜓) =
1
𝑁
*
!

𝑥! − 𝑔" 𝑓# 𝑥!
$

• Minimize this loss over parameters of  encoder (𝜃) 
and decoder (𝜓).

• NOTE: if  𝑓# 𝑥 and 𝑔" 𝑧 are linear, optimal 
solution given by Principle Components Analysis
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Autoencoder Mappings

• If  the latent space is of  lower dimension, the 
autoencoder has to capture a “good” 
parametrization, and in particular dependencies 
between components
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Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Deep Autoencoder 16

𝑥 𝑧 #𝑥𝑓(") 𝑔($)

• When 𝑓! and 𝑔" are multiple neural network layers, 
can learn complex mappings between 𝒳 and ℱ
– 𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of  network structure will depend on data

𝑓(%) 𝑓($) 𝑔(%) 𝑔(")



Deep Autoencoder 17

𝑥 𝑧 #𝑥𝑓! 𝑔"

• When 𝑓! and 𝑔" are multiple neural network layers, 
can learn complex mappings between 𝒳 and ℱ
– 𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of  network structure will depend on data



Deep Convolutional Autoencoder 18

Fleuret, Deep Learning Course

𝑓! and 𝑔" are each
5 convolutional layers

https://fleuret.org/dlc/


Interpolating in Latent Space 19
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Can We Generate Data with Decoder? 20

• Can we sample in latent space 
and decode to generate data?
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• Can we sample in latent space 
and decode to generate data?

• What distribution to sample 
from in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course
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Can We Generate Data with Decoder?

• Don’t know the right latent space density

22

• Can we sample in latent space 
and decode to generate data?

• What distribution to sample 
from in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Generative Models
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Generative Models 24

• Generative models aim to:
– Learn a distribution 𝑝(𝑥) that explains the data
– Draw samples of  plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of  a data point x

• Implicit Models
– Can only sample from 𝑝(𝑥), but not evaluate density



Denoising Autoencoders

• Learn a mapping from corrupted data space 0𝒳
back to original data space

–Mapping 𝜙' &𝒳 = 𝒳
– 𝜙' will be a neural network with parameters 𝑤

• Loss: 

L =
1
𝑁
*
!

𝑥! − 𝜙%(𝑥! + 𝜖!)

25

Perturbation, e.g. Gaussian noise



Denoising Autoencoders Examples 26

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Denoising Autoencoders Examples 27

Fleuret, Deep Learning Course

• Autoencoder learns the 
average behavior

• What if  we care about 
these variations?

• Can we add a notion of  
variation in the 
autoencoder?

https://fleuret.org/dlc/


From Deterministic to Probabilistic Autoencoder 28

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥
#$%&'(

𝑧 → 𝑝(𝑥|𝑧)

– Choose simple prior distribution

– Encoder: Learn what latents can produced data:  𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent:  𝑝(𝑥|𝑧)

• Consider probabilistic relationship between data and 
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)



Autoencoder 29

*

⋆

*
x



Variational Autoencoder 30

*

⋆

*
x



Variational Autoencoder 31

*

⋆

Draw sample*
x



Encoding 32

• Typical encoder maps input 𝑥 to “average” point in latent space

𝑓 𝑥 = 𝜇(𝑥)



• A VAE Encoder has two outputs: mean & variance function 

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎! 𝑥 }

• What is the probability of  a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧 𝜇! 𝑥 , 𝜎! 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 𝜖~𝑁(0, 𝐼)

Encoding 33

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick
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Encoding 35

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function 

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎! 𝑥 }

• What is the probability of  a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧 𝜇! 𝑥 , 𝜎! 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 𝜖~𝑁(0, 𝐼)



Encoding 36

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

NOTE:
Could have chosen 
different density and 
use NN to predict 
params…

As long as we can 
sample using 
re-parameterization

• A VAE Encoder has two outputs: mean & variance function 

𝑓! 𝑥 = {𝜇! 𝑥 , 𝜎! 𝑥 }

• What is the probability of  a point in latent space?

𝑝! 𝑧 𝑥 = 𝑁 𝑧 𝜇! 𝑥 , 𝜎! 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎! 𝑥 ∗ 𝜖 + 𝜇! 𝑥 𝜖~𝑁(0, 𝐼)



Decoding 37

• Same approach, VAE decoder has two outputs
𝑔( 𝑧 = {𝜇( 𝑧 , 𝜎( 𝑧 }

• Likelihood of  an observation 𝑥
𝑝( 𝑥 𝑧 = 𝑁 𝑥 𝜇( 𝑧 , 𝜎( 𝑧 )

𝜃 are parameters of the NN

Gaussian Density



Variational Autoencoder 38

𝑥 𝑧 = 𝜖 ∗ 𝜎# 𝑥 + 𝜇#(𝑥)𝑓" 𝑔!𝜎"(𝑥)

𝜇"(𝑥)

Sample:
𝜖~𝑁(0, 𝐼)

𝜎!(𝑧)

𝜇!(𝑧)



What is the Loss for Training? 39

*

⋆

Draw sample*
x

Reconstruction Loss: Maximize expected likelihood of  
decoding 𝑥 from encodings of  𝑥

𝐿#$%& = 𝔼'~)('|,) log 𝑝 𝑥 𝑧 ≈
1
𝑁

3
'.~)('|,)

log 𝑝 𝑥 𝑧.



Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

40

• Note that

log 𝑝 𝑥 𝑧 = −log 𝜎!(𝑧) −
𝑥 − 𝜇! 𝑧

1

𝜎! 𝑧 1 + 𝑐𝑜𝑛𝑠𝑡

This looks almost exactly like the Autoencoder Loss

Which was a Mean Squared Error (𝑥 − 𝑓 𝑔 𝑥 #

Here we have 𝑧 ≡ 𝑧"(𝑥)



Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• What about encoder? How do we make sure it doesn’t 
collapse around each point (i.e. only predict mean)

41



Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• Use prior 𝑝 𝑧 for the latent space distribution, 
need to ensure the encoder is consistent with prior

42



Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• Use prior 𝑝 𝑧 for the latent space distribution, 
need to ensure the encoder is consistent with prior

• Constrain difference between distributions with 
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= 0𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

𝑑𝑧

– 𝐷,-[𝑞|𝑝] ≥ 0 and is only 0 when 𝑞 = 𝑝
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Variational Autoencoder Training Loss

• 𝐿#$%& =
/
0
∑'~)/('|,) log 𝑝! 𝑥 𝑧.

• Use prior 𝑝 𝑧 for the latent space distribution, 
need to ensure the encoder is consistent with prior

• VAE full objective

max
.,0

𝐿 𝜃, 𝜓 = max
.,0

𝔼10 𝑧 𝑥 log 𝑝.(𝑥|𝑧) − 𝐷,-[𝑞0 𝑧 𝑥 |𝑝(𝑧)]

44

Reconstruction Loss Regularization of Encoder



Examples 45

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf


Examples 46

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md
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Another Way To Do Generative Modeling…

• Formulate as a two player game

• One player tries to output data that looks as real 
as possible

• Another player tries to compare real and fake data

• In this case we need:
1. A generator that can produce samples
2. A measure of  not too far from the real data

48



Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the generated distribution 𝑝!(𝑥) is, 
but we can sample from it à Implicit Model

49Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 𝑧~𝑝(𝑧)

– We don’t know what the generated distribution 𝑝!(𝑥) is, 
but we can sample from it à Implicit Model

• Discriminator Network 𝒅𝝓(𝒙) with parameters 𝜙
– Classifier trained to distinguish between real and fake data

– Classifier is learning to predict 𝑝 𝑦 = 𝑟𝑒𝑎𝑙 𝑥)

– This classifier is our measure of  not too far from the real data

50Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


GAN Setup

• Generator’s goal is to produce fake data that tricks 
the discriminator to think it is real data

• Discriminator wants to miss-classify data as real or 
fake as little as possible

• The setup is adversarial because the two networks 
have opposing objectives 

51

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


GAN Objective

• Data
– Real data samples:   𝑥2, 𝑦2 = 1

– Fake data samples:   <𝑥2 = 𝑔.(𝑧2), <𝑦2 = 0 with:  𝑧2~𝑝(𝑧)
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GAN Objective

• Data
– Real data samples:   𝑥2, 𝑦2 = 1

– Fake data samples:   <𝑥2 = 𝑔.(𝑧2), <𝑦2 = 0 with:  𝑧2~𝑝(𝑧)

• For a fixed generator, can train discriminator by 
minimizing the cross entropy

53
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GAN Objective

• Data
– Real data samples:   𝑥2, 𝑦2 = 1

– Fake data samples:   <𝑥2 = 𝑔.(𝑧2), <𝑦2 = 0 with:  𝑧2~𝑝(𝑧)

• For a fixed generator, can train discriminator by 
minimizing the cross entropy
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GAN Objective

• However, generator isn’t fixed… have to train it!
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GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of  𝜙 and 𝜃

57
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GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of  𝜙 and 𝜃
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– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is 
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse 
discriminator and 𝑉(𝜙, 𝜃) will be low



GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of  𝜙 and 𝜃
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V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
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i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is 
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse 
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:
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�
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GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of  𝜙 and 𝜃
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V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)) )

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is 
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse 
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin
✓

max
�

V (�, ✓)

NOTE: can prove that 
minimax solution 
corresponds to  generator 
that perfectly reproduces 
data distribution 

𝑞$∗ 𝑥 = 𝑝%&'&(𝑥)



GAN Training

• Alternating Gradient descent to solve the min-max problem:

𝜃 ← 𝜃 − 𝛾∇.𝑉 𝜙, 𝜃 = 𝜃 − 𝛾
𝜕𝑉
𝜕𝑑

𝜕(𝑑3)
𝜕𝑔

𝜕𝑔.
𝜕𝜃

𝜙 ← 𝜙 − 𝛾∇3𝑉 𝜙, 𝜃 = 𝜙 − 𝛾
𝜕𝑉
𝜕𝑑

𝑑(𝑑3)
𝑑𝜙

• For each 𝜃 step, take 𝑘 steps in 𝜙 to keep discriminator near 
optimal

61

equilibrium

Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


GAN Training Example 62

GAN Lab Demo

https://poloclub.github.io/ganlab/


Examples 63

Goodfellow et. al., 2014

Radford et al, 2015

Not so good
Goodfellow 2016

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Challenges

• Oscillations without convergence: unlike standard loss 
minimization, alternating stochastic gradient descent has 
no guarantee of  convergence.

• Vanishing gradients: if  classifier is too good, value 
function saturates à no gradient to update generator

• Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution modes.

• Difficult to assess performance, when are generated data 
good enough?

64

Mode collapse (Metz et al, 2016)Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md


Improving GANS

• Standard GANS compare real 
and fake distributions with 
Jensen-Shannon Divergence, 
“vertically”

• Wasserstein-GAN (Arjovsky
et al, 2017) compares 
“horizontally” with 
Wasserstein-1 distance 
(a.k.a. Earth Movers distance) 

• Substantially improves 
vanishing gradient and mode 
collapse problems!

65

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3


WGAN Examples 66

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3


Scaling Up 67

Progressive GAN



Scaling Up 68

BigGAN

StyleGAN v2



Applications: Image-to-Image Translation with CycleGAN 69

• 𝑝(𝑧) doesn’t have to be random noise

• CycleGAN uses cycle-consistency loss in addition to GAN loss
– Translating from AàBàA should be consistent with original A



Applications: Text-to-Image Synthesis with StackGAN 70



Summary

• Deep neural networks are an extremely powerful 
class of  models

• We can express our inductive bias about a system 
in terms of  model design, and can be adapted to a 
many types of  data

• Even beyond classification and regression, deep 
neural networks allow for powerful model 
schemes such as Variational Autoencoder and 
Generative adversarial Networks
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Modeling High Dimensional Data

• Must first determine the question we want to ask, 
and formulate an appropriate loss function
– Loss function encodes the quality of  model prediction
– Parameterize models with neural networks

• Will have many of  the same theoretical and 
practical issues as in classification and regression
–What is the right class and structure of  the model 

(CNN, RNN, graph, etc.) for the data?
– How do we stably optimize the loss w.r.t. parameters?
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• Autoencoders learn the latent space, but we don’t 
know what is the latent space distribution

• Autoencoder prescribes a deterministic 
relationship between data space and latent space 

• One set of  “meaningful degrees of  freedom” can 
only describe one data space point
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Latent Variable Models 75

• Observed random variable 𝑥 depends on unobserved 
latent random variable 𝑧
– Interpret 𝑧 as the causal factors for 𝑥

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is a stochastic generation process from 𝑧 → 𝑥

• Inference from posterior:        𝑝 𝑧 𝑥 = & 𝑥 𝑧 & >
&(?)

– Usually can’t compute marginal 𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝 𝑧 𝑑𝑧

𝑧 𝑥



Autoencoder: Deterministic to Probabilistic

• Consider probabilistic relationship between data and 
latent variables

𝑥, 𝑧 ~ 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

76
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How do we design Encoder and Decoder

• Classification / regression models make single 
predictions… 

How to model a conditional density 𝑝(𝑎|𝑏) ?

• Assume a known form of  density, e.g. normal

𝑝 𝑎 𝑏 = 𝒩 𝑎; 𝜇 𝑏 , 𝜎 𝑏

– Parameters of  density depend on conditioned variable

• Use neural network to model density parameters
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𝜇(𝑏)

𝜎(𝑏)
𝑏
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The Decoder

• Decoder
– Neural network with parameters 𝜃
– Input 𝑧à output estimate of  Gaussian 𝜇((𝑧) , 𝜎((𝑧)

• Likelihood of  a data point x

log 𝑝 𝑥 𝑧 = −log 𝜎((𝑧) −
𝑥 − 𝜇( 𝑧

)

𝜎( 𝑧 ) + 𝑐𝑜𝑛𝑠𝑡
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The Encoder

• Encoder
– Neural network with parameters 𝜓
– Input 𝑥à outputs estimate of  Gaussian 𝜇*(𝑥) , 𝜎*(𝑥)

• For reconstruction loss:
– Need a value of  𝑧 to evaluate decoder!
– Need to gradient through 𝑧 to encoder parameters

max
.,0

𝐿 𝜃, 𝜓 = max
.,0

F
81~10 𝑧 𝑥

log 𝑝.(𝑥|𝑧2) − log
𝑞0 𝑧2 𝑥
𝑝 𝑧2
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Reparameterization trick

• For z~𝑝#(𝑧), rewrite 𝑧 as a function of  a random 
variable 𝜖 whose distributions 𝑝(𝜖) does not 
depend on 𝜃
– Gaussian Example: 

𝑧~𝒩 𝜇, 𝜎 → 𝑧 = 𝜎 ∗ 𝜖 + 𝜇 𝑤ℎ𝑒𝑟𝑒 𝜖~𝒩(0,1)

• VAE Loss

max
!,"

𝐿 𝜃, 𝜓 = max
!,"

1
$~&($)

log 𝑝! 𝑥 𝑧) = 𝜖 ∗ 𝜎" 𝑥 + 𝜇" 𝑥 − log
𝑞" 𝑧) 𝑥
𝑝 𝑧)
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Explicit Density Estimation with Normalizing Flows
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Explicit Density Estimation

• In VAE and GAN we can learn to sample from 
the distribution…

• Is there a way to learn the explicit density 𝑝(𝑥) ?
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Reminder: Calculus Change of  Variables

∫ 𝑓 𝑔 𝑥 =>(𝒙)
B𝒙

𝑑𝑥 = ∫ 𝑓 𝑢 𝑑𝑢 where 𝑢 = 𝑔 𝑥

Multivariate: 
∫ 𝑓 𝑔 𝒙 det =>(𝒙)

B𝒙
𝑑𝒙 = ∫ 𝑓 𝒖 𝑑𝒖 where 𝒖 = 𝑔 𝒙
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Determinant of Jacobian
of the transformation

à Change of volume 



Change of  Variables in Probability
• If  𝑓 is continuous, invertible, differentiable, and 
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝C 𝒙 = 𝑝D 𝒛 det =E 𝒛
B𝒛

GH
where 𝒙 = 𝜙 𝒛
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The term det $% 𝒛
'𝒛

()
accounts for the local stretching of space 



Change of  Variables with Neural Networks 85

• 𝑥 = data we want to model,       𝑧 = known noise

• 𝜙!(𝑧) will be a neural network with parameters 𝜃
– Must be continuous, invertible, differentiable

• Output of  𝜙 is a potential sample 𝑥
– Learn the right 𝜙: adjust weights 𝜃 to maximize data 

probability (formula above) 

• If  𝑓 is continuous, invertible, differentiable, and 
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝C 𝒙 = 𝑝D 𝒛 det =E 𝒛
B𝒛

GH
where 𝒙 = 𝜙 𝒛



Change of  Variables with Neural Networks 86

• 𝑥 = data we want to model,       𝑧 = known noise

• If  𝑓 is continuous, invertible, differentiable, and 
𝑥 = 𝑓23 𝑧 ≡ 𝜙 𝑧 then

𝑝C 𝒙 = 𝑝D 𝒛 det =E 𝒛
B𝒛

GH
where 𝒙 = 𝜙 𝒛

𝜙GH 𝒙 inverse
– Input    = a sample X
– Output = a sample of  noise

𝜙 𝒛 neural network
– Input    = a sample of  noise
– Output = a sample of  X

⟺

• Calculate the probability of  a sample using the formula above



Normalizing Flows 87

𝑝* 𝒙 = 𝑝+ 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

()

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf
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𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf
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𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf
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𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf
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𝑥 𝑧
𝜙*+(𝑥)

𝜙(𝑧)

𝑝C(𝑥) 𝑝D(𝑧)
𝑝,(𝜙*+ 𝑥 ) det

𝜕𝜙*+ 𝒙
𝑑𝒙

𝑝, 𝑧 det
𝜕𝜙 𝒛
𝑑𝒛

*+



Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
#
𝑝 𝑥 = max

#
𝑝4 𝜙#

23(𝑥) det
𝜕𝜙#

23 𝒙
𝑑𝒙

– Gradient descent on 𝜃
– Find transformation s.t. data is most likely

• Benefits once trained
– Can evaluate p(x) for any point X
– Can generate “new” data points
• Sample noise:  𝑧~𝑝(𝑧)
• Transform:     𝜙 𝑧 = 𝑥
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Example Normalizing Flow: Real NVP 93

• Data vector 𝑥 =
𝑥C
𝑥D

• Transformation

𝜙 𝑧 :
𝑥C
𝑥D =

𝜙C(𝑧)
𝜙D(𝑧)

=
𝑧C

𝑧D ∗ 𝑓 𝑧C + 𝑔(𝑧C)

𝜙EC 𝑥 :
𝑧C
𝑧D = 𝜙CEC(𝑥)

𝜙DEC 𝑥
=

𝑥C
𝑥D − 𝑔 𝑥C /𝑓(𝑥C)

• Determinant:  

det
𝜕𝜙 𝒛
𝑑𝒛

= det
1 0

𝜕𝜙-(𝑧)
𝑑𝑧+

𝑓(𝑧+)
= 𝑓(𝑧-)

Functions f() and g()
are neural networks

Jacobian is
lower triangular



Example Normalizing flow 94

𝜙(𝑧)

𝑧)

𝑧#



Applications: Sampling in Lattice QCD 95

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

