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The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows
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Modern Neural Networks 3

People are now building a new kind of  software by 
assembling networks of  parameterized functional 
blocks and by training them from examples using 
some form of  gradient-based optimization.   

- Yann LeCun, 2018



Modern Neural Networks

• Non-linear operations of  data with parameters

• Layers (set of  operations) designed to perform specific 
mathematical operations

• Chain together layers to perform desired computation

• Train system (with examples) for desired computation using 
gradient descent
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Modern Neural Networks 5

People are now building a new kind of  software by 
assembling networks of  parameterized functional 
blocks and by training them from examples using 
some form of  gradient-based optimization.   

- Yann LeCun, 2018

An increasingly large number of  people are defining the 
networks procedurally in a data-dependent way (with 
loops and conditionals), allowing them to change 
dynamically as a function of  the input data fed to 
them. It's really very much like a regular program, 
except it's parameterized

- Yann LeCun, 2018



The Plan

• Deep Learning is a HUGE field
– O(10,000) papers submitted to conferences

• I’m will condense some parts of  what you would find 
in some lectures of  a Deep Learning course

• Highly recommend taking the time to go more 
slowly through lectures from a class. Online-available 
Recommendations:
– Francois Fleuret course at University of  Geneva
– Gilles Louppe course at University of  Liege
– Yann LeCun & Alfredo Canziani course at NYU
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https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://atcold.github.io/pytorch-Deep-Learning/


From Logistic Regression to Neural Networks 7



Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}
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p(y = 1|x) = 1

1 + e�wT�(x)



Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?
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Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u)      Rm → Rd

– Where u is a set of  parameters for the transformation
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Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u)      Rm → Rd

– Where u is a set of  parameters for the transformation

– Combines basis selection and learning
– Several different approaches, focus here on neural networks
– Complicates the optimization
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p(y = 1|x) = 1
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Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)
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Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) =                   Î Rd

– s is a point-wise non-linearity acting on each vector element 
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s(u1Tx)
s(u2Tx)

…
s(udTx)



Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(uj
Tx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) =                   Î Rd

– s is a point-wise non-linearity acting on each vector element 

• Full model becomes
h(x; w, U) = wTf(x; U)
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s(u1Tx)
s(u2Tx)

…
s(udTx)



Feed Forward Neural Network 15

�(x) = �(Ux)

h(x) = wT�(x)

U

Hidden layer
Composed of neurons

f(…) often called the 
activation function



Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer

16

U V



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function
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h(x) = wT�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

18

h(x) = wT�(Ux)

L(w,U) =
1

2

X
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(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))
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Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U
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h(x) = wT�(Ux)

L(w,U) =
1

2
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Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?
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Chain Rule – Symbolic Differentiation Painful!

• Derivative of  sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

21

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))
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Differentiation in Code 22

Baydin, Pearlmutter, Radul, Siskind. 
2018. “Automatic Differentiation in 
Machine Learning: a Survey.” 
Journal of Machine Learning 
Research (JMLR) 



Automatic Differentiation

• Exact derivatives for gradient-based optimization come from 
running differentiable code via automatic differentiation
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f(x) {…};

df(x) {…};

• Can compute derivatives not just of  mathematical functions, 
but derivatives of  general purpose code with control flow, 
loops, recursions, etc.



Forward and Reverse Mode

• Derivatives can be computed in Forward Mode and 
Reverse Mode
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Primals
Derivatives

Derivatives

Forward Mode Single Evaluation: 𝒇 𝒙 : ℝ! → ℝ"

!𝒇(𝒙)
!𝒙

=

!&!
!'!

… !&"
!'!

⋮ ⋱ ⋮
!&!
!'#

… !&"
!'#

Reverse Mode Single Evaluation: 𝒇 𝒙 : ℝ! → ℝ"

!𝒇(𝒙)
!𝒙

=

!&!
!'!

… !&"
!'!

⋮ ⋱ ⋮
!&!
!'#

… !&"
!'#

Forward Mode

Reverse Mode
Primals

Chain Rule:  (!
()
= (!

(*
(*
()



Backpropagation

• Loss function composed of  layers of  nonlinearity
25

𝐿 𝜙% …𝜙& 𝑥



Backpropagation

• Loss function composed of  layers of  nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations
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𝐿 𝜙% …𝜙& 𝑥

𝜙% …𝜙& 𝑥



Backpropagation

• Loss function composed of  layers of  nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)
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Backpropagation

• Loss function composed of  layers of  nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients
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Training

• Repeat gradient update of  weights to reduce loss 
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and 
determine when to stop training 
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[graphic from H. Larochelle]



Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic 
gradient descent à Limits ability to learn!
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Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md


Activation Functions

• Vanishing gradient problem
– Derivative of  sigmoid:

– Nearly 0 when x is far from 0!
– Can make gradient descent hard!
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∂σ (x)
∂x

=σ (x)(1−σ (x))

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$



Neural Network Decision Boundaries 32

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r


Universal approximation theorem

• Feed-forward neural network with a single hidden 
layer containing a finite number of  non-linear 
neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily well 
on a compact space of  ℝ!

33

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Universal approximation theorem

• Feed-forward neural network with a single hidden 
layer containing a finite number of  non-linear 
neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily well 
on a compact space of  ℝ!
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• NOTE!
– A better approximation requires a larger hidden layer and this 

theorem says nothing about the relation between the two.

– We can make training error as low as we want by using a larger 
hidden layer. Result states nothing about test error

– Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Deep Neural Networks

• As data complexity grows, need exponentially large number of  neurons in 
a single-hidden-layer network to capture all structure in data

• Deep neural networks factorize the learning of  structure in data across 
many layers

• Difficult to train, only recently possible with large datasets, fast computing 
(GPU / TPU) and new training procedures / network structures 
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Neural Network Zoo

• Structure of  the networks, and 
the node connectivity can be 
adapted for problem at hand

• Moving inductive bias from 
feature engineering to model 
design 

– Inductive bias:
Knowledge about the problem 

– Feature engineering:
Hand crafted variables 

– Model design:
The data representation and the 
structure of  the machine 
learning model / network 

36

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/


Neural Network Zoo – “Optimization” Perspective 37

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 38

Belkin et. al. 2018

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff  prediction

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 39

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff  prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 40

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of  Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff  prediction

• Major part of  deep learning is trying to choose the 
right function…

… instead of  trying to improve training with 
regularization and new optimizers

– Need to make gradient descent work, even at the cost of  a 
substantially engineering the model

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Convolutional Neural Networks 41



Convolutional Neural Networks

• When the structure of  data includes “invariance 
to translation”, a representation meaningful at a 
certain location can / should be used everywhere
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Fleuret, Deep Learning Course

• Convolutional layers build on this idea, that the 
same “local” transformation is applied everywhere 
and preserves the signal structure

https://fleuret.org/dlc/


1D Convolutional Layer Example 43

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


1D Convolutional Layers

• Data:                                                  𝑥 ∈ ℝ"

• Convolutional kernel of  width k:      𝑢 ∈ ℝ#

• Convolution 𝑥 ⊛ 𝑢 is vector of  size M-k+1

44

𝑥 ⊛ u ! = %
"#$

%&'

𝑥!("𝑢"

• Scan across data and multiply by kernel elements 



Convolutional Filters 45

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 46

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 47

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 48

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolutional Layer

• Input data (tensor) x of  size C×𝐻×𝑊
– C channels (e.g. RGB in images)

• Learnable Kernel u of  size C×ℎ×𝑤
– The size ℎ×𝑤 is the receptive field

49

• Output size (𝐻 − ℎ + 1)×(𝑊 −𝑤 + 1) for each kernel 
– Often called Activation Map or Output Feature Map

𝒙⊛ 𝒖 !,* = %
+#$

,&'

𝒙+⊛𝒖+ !,* = %
+#$

,&'

%
-#$

.&'

%
/#$

0&'

𝒙+,-(!,/(*𝒖+,-,/



Stride – Step Size When Moving Kernel Across Input 50

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Padding – Size of  Zero Frame Around Input 51

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of  weights needed to 
produce an activation map
– Data: 256×256×3 RGB image
– Kernel: 3×3×3 → 27 weights
– Fully connected layer:

• 256×256×3 inputs à 256×256×3 outputs à 𝑂(10+,) weights

52

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of  weights needed to 
produce an activation map

• Convolutional layer does pattern matching at any 
location à Equivariant to translation
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Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Pooling

• In each channel, find max or average value of  
pixels in a pooling area of  size ℎ×𝑤

54

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Pooling

• In each channel, find max or average value of  
pixels in a pooling area of  size ℎ×𝑤
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Fleuret, Deep Learning Course

• Invariance to 
permutation within 
pooling area

• Invariance to local 
perturbations

https://fleuret.org/dlc/


Normalization

• Maintaining proper statistics of  the activations and derivatives is a 
critical issue to allow the training of  deep architectures

“Training Deep Neural Networks is complicated by the fact that 
the distribution of  each layer’s inputs changes during training, 
as the parameters of  the previous layers change. This slows 
down the training by requiring lower learning rates and careful 
parameter initialization …”

56

Ioffe, Szegedy, 
Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018



Batch Normalization
• During training batch normalization shifts and rescales according 

to the mean and variance estimated on the batch.
– During test, use empirical moments estimated during training

• Per-component mean and variance on the batch

• Normalize and compute output ∀𝑏 = 1…𝐵

– 𝛾 and 𝛽 are parameters to optimize
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𝑚!"#$% =
1
𝐵5
!&'

(

𝑥!

𝑣!"#$% =
1
𝐵5

'

(

𝑥! −𝑚!"#$%
)

𝑧! =
𝑥! −𝑚!"#$%

𝑣!"#$% + 𝜖

𝑦! = 𝛾⨀𝑧! + 𝛽



Convolutional Network

• A combination of  convolution, pooling, ReLU, 
and fully connected layers
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Convolutional Networks 59

LeNet
(LeCun et al, 1998)

AlexNet
(Krizhevsky et al, 2012)

ImageNet Classification



Hierarchical Composition of  Features 60



Deep CNNs

• To go deeper, 
architectures become 
much more complex
– Multiple convolutions 

in parallel and 
recombined

– Skip connections

• Recent ResNet-152 
has 152 layers!

61

GoogLeNet
(Szegedy et al, 2014)

ResNet
(He et al, 2015)Credits: Deep Dive in Deep Learning

https://d2l.ai/


Residual Connections

• Training very deep networks is made possible 
because of  the skip connections in the residual 
blocks. Gradients can shortcut the layers and pass 
through without vanishing.

62

Credits: Deep Dive in Deep Learning , and G. Louppe

https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md


Benefits of  Depth 63



Recurrent Neural Networks 64



Sequential Data

• Many types of  data are not fixed in size

• Many types of  data have a temporal or 
sequence-like structure
– Text
– Video
– Speech
– DNA
– …

• MLP expects fixed size data

• How to deal with sequences?

65



Sequential Data

• Given a set 𝒳, let 𝑆 𝒳 be the set of  sequences, 
where each element of  the sequence 𝑥$ ∈ 𝒳
– 𝒳 could reals ℝ3 , integers ℤ3 , etc.
– Sample sequence 𝑥 = {𝑥&, 𝑥4, … , 𝑥5}

• Tasks related to sequences:
– Classification                    𝑓: 𝑆 𝒳 → {𝒑 |∑67&% 𝑝8 = 1}
– Generation                       𝑓: ℝ9 → 𝑆 𝒳
– Seq.-to-seq. translation    𝑓: 𝑆 𝒳 → 𝑆 𝒴

66

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent States

• Input sequence 𝑥 ∈ 𝑆(ℝ!) of  variable length 𝑇(𝑥)

• Standard approach: use recurrent model that 
maintains a recurrent state 𝒉" ∈ ℝ# updated at each 
time step 𝑡.  For 𝑡 = 1,… , 𝑇 𝑥 :

𝒉"$% = 𝜙(𝒙", 𝒉"; 𝜃)

– Simplest model: 

𝜙 𝒙! , 𝒉!;𝑊, 𝑈 = 𝜎(𝑊𝒙! + 𝑈𝒉!)

• Predictions can be made at any time 𝑡 from the 
recurrent state

𝒚" = 𝜓(𝒉"; 𝜃)
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Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 68

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 69

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 70

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 71

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 72

Credit: F. Fleuret

Prediction per sequence element

Although the number of  steps 𝑇(𝑥) depends on 𝑥, this is a standard 
computational graph and automatic differentiation can deal with it as 
usual. This is known as “backpropagation through time” (Werbos, 1988)

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf


Stacked RNN 73

𝒙!:#

𝒘
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Stacked RNN 74
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Two Stacked LSTM Layers

1st RNN Layer

2nd RNN Layer

Zoom in



Bi-Directional RNN 75
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• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

Gating 76

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

• LSTM: 
– Add internal state separate 

from output state
– Add input, output, and 

forget gating

Long Short Term Memory (LSTM) 77
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Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


Comparison on Toy Problem 78

Learn to recognize palindrome
Sequence size between 1 to 10

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md


Examples 79

Y. Wu et al, 2016

https://arxiv.org/abs/1609.08144


Examples 80

Self-driving Mario Kart with RNN: YouTube video

https://youtu.be/Ipi40cb_RsI


Examples 81

Shen et al., 2017

https://arxiv.org/abs/1712.05884


Graph Data 82



Graph Data

• Sequential data has single (directed) connections 
from data at current time to data at next time

• What about data with more complex dependencies  

83

x1 x2 x3 xT…

Image Credit: I. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654


Graphs

• Adjacency matrix: 𝐴8< = 𝛿(𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑎𝑛𝑑 𝑗)

• Each node can have features

• Each edge can have features, e.g. distance between nodes

84

Vertex / node

Edge

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 85

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 86

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 87

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 88

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 89

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Examples 90

Schutt et al. 2017

https://www.nature.com/articles/ncomms13890


Examples 91

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405


Summary

• Neural Networks allow us to combine non-linear 
basis selection with feature learning
– Care needed to train them and ensure they don’t overfit

• Deep neural networks allow us to learn complex 
function by hierarchically structuring the feature 
learning

• We can use our inductive bias (knowledge) to define 
models that are well adapted to our problem

• Many neural networks structures are available for 
training models on a wide array of  data types. 

92



End of  Lecture II
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Automatic Differentiation

95



Automatic Differentiation Example

• All numerical algorithms, when executed, evaluate to 
compositions of  a finite set of  elementary operations with 
known derivatives 
– Represent as a computational graph showing dependencies

96

𝑓 𝑎, 𝑏 = log 𝑎𝑏

∇𝑓 𝑎, 𝑏 =
1
𝑎
,
1
𝑏



Automatic Differentiation Example

• All numerical algorithms, when executed, evaluate to 
compositions of  a finite set of  elementary operations with 
known derivatives 
– Represent as a computational graph showing dependencies

97

f(a, b):
c = a * b
d = log(c) 
return d

f(2, 3) = 1.791

2

3

6
1.791

Primals



Automatic Differentiation Example

• All numerical algorithms, when executed, evaluate to 
compositions of  a finite set of  elementary operations with 
known derivatives 
– Represent as a computational graph showing dependencies

98

f(a, b):
c = a * b
d = log(c) 
return d

2

3

6
1.791

f(2, 3) = 1.791
df(2,3) = [0.5, 0.333]

𝜕𝑐
𝜕𝑎 = 𝑏 = 3

𝜕𝑐
𝜕𝑏 = 𝑎 = 2

𝜕𝑑
𝜕𝑐 =

1
𝑐 = 0.166

Chain Rule:  (!
()
= (!

(*
(*
()
= 0.166 ∗ 3 = 0.5



Automatic Differentiation 99

Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

𝑧 = sin 𝑥" + 𝑥"𝑥#



Automatic Differentiation 10
0

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,

𝑤' = 𝑥'
𝑤) = 𝑥)
𝑤+ = 𝑤'𝑤)
𝑤* = sin 𝑤'
𝑤, = 𝑤+ + 𝑤*
𝑧 = 𝑤,

Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

𝑧 = sin 𝑥" + 𝑥"𝑥#

Organize as a computational Graph



Automatic Differentiation 10
1

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,

𝑤' = 𝑥'
𝑤) = 𝑥)
𝑤+ = 𝑤'𝑤)
𝑤* = sin 𝑤'
𝑤, = 𝑤+ + 𝑤*
𝑧 = 𝑤,

𝑑𝑤$
𝑑𝑥$

= 1

𝑑𝑤%
𝑑𝑥%

= 1

𝑑𝑤&
𝑑𝑤$

= 𝑤%
𝑑𝑤&
𝑑𝑤%

= 𝑤$
𝑑𝑤'
𝑑𝑤$

= cos(𝑤$)

𝑑𝑤(
𝑑𝑤&

= 1
𝑑𝑤(
𝑑𝑤'

= 1

Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

We know the gradients of  simple
functions: sin 𝑥 , 𝑥 ∗ 𝑦, 𝑥 + 𝑦 …

Chain rule: 
𝑑𝑧
𝑑𝑤+

= B
-∈-)/0123

𝑑𝑧
𝑑𝑤-

𝑑𝑤-
𝑑𝑤4



Automatic Differentiation 10
2

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,

𝑤' = 𝑥'
𝑤) = 𝑥)
𝑤+ = 𝑤'𝑤)
𝑤* = sin 𝑤'
𝑤, = 𝑤+ + 𝑤*
𝑧 = 𝑤,

Problem: Compute gradients of  𝑧
with respect to inputs 𝑥", 𝑥#

NOT going to find analytic derivative

WILL find a way to compute value of  
gradient for a given input point



Forward Mode Automatic Differentiation 10
3

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

For each input, from input to output 
sequentially, evaluate graph and  gradients 
and store values

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1



Forward Mode Automatic Differentiation 10
4

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each input, from input to output 
sequentially, evaluate graph and  gradients 
and store values

Apply chain rule with multiplication
𝑑𝑧
𝑑𝑥Q

=
𝑑𝑤Q
𝑑𝑥Q

𝑑𝑤R
𝑑𝑤Q

𝑑𝑤S
𝑑𝑤R

𝑑𝑧
𝑑𝑤S

= 1 ∗ 2 ∗ 1 ∗ 1 = 2

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1



Forward Mode Automatic Differentiation 10
5

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Forward Mode allows us to compute the gradient
of  one input with respect to all the output

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

𝑑𝑤!
𝑑𝑥!

= 1
𝑑𝑤"
𝑑𝑤!

= 𝑤# = 2

𝑑𝑤$
𝑑𝑤"

= 1 𝑑𝑧
𝑑𝑤$

= 1

Jacobian   9𝒛
9𝒙
=

9E!
9F!

… 9E"
9F!

⋮ ⋱ ⋮
9E!
9F#

… 9E"
9F#

If  we have 1 output (Loss) and many inputs à SLOW!



Reverse Mode Automatic Differentiation 10
6

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Evaluate graph and store values

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,



Reverse Mode Automatic Differentiation 10
7

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤, 𝑑𝑧

𝑑𝑤,
= 1

= 1



Reverse Mode Automatic Differentiation 10
8

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤,

= 1

𝑑𝑧
𝑑𝑤+

=
𝑑𝑧
𝑑𝑤,

𝑑𝑤,
𝑑𝑤+

= 1×1 = 1

= 1= 1



Reverse Mode Automatic Differentiation 10
9

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤,

= 1

𝑑𝑧
𝑑𝑤+

=
𝑑𝑧
𝑑𝑤,

𝑑𝑤,
𝑑𝑤+

= 1×1 = 1

𝑑𝑧
𝑑𝑤*

=
𝑑𝑧
𝑑𝑤,

𝑑𝑤,
𝑑𝑤*

= 1×1 = 1

= 1= 1

= 1



Reverse Mode Automatic Differentiation 11
0

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

Compute derivatives with chain rule
from end to beginning:

𝑑𝑧
𝑑𝑤,

= 1

𝑑𝑧
𝑑𝑤+

=
𝑑𝑧
𝑑𝑤,

𝑑𝑤,
𝑑𝑤+

= 1×1 = 1

𝑑𝑧
𝑑𝑤*

=
𝑑𝑧
𝑑𝑤,

𝑑𝑤,
𝑑𝑤*

= 1×1 = 1

= 1= 1

= 1

𝑑𝑧
𝑑𝑤)

=
𝑑𝑧
𝑑𝑤+

𝑑𝑤+
𝑑𝑤)

= 1×𝑤' = 𝑤' = 2

= 𝑤'= 2



Reverse Mode Automatic Differentiation 11
1

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

𝑑𝑧
𝑑𝑤,

= 1

𝑑𝑧
𝑑𝑤+

=
𝑑𝑧
𝑑𝑤,

𝑑𝑤,
𝑑𝑤+

= 1×1 = 1

𝑑𝑧
𝑑𝑤*

=
𝑑𝑧
𝑑𝑤,

𝑑𝑤,
𝑑𝑤*

= 1×1 = 1

𝑑𝑧
𝑑𝑤)

=
𝑑𝑧
𝑑𝑤+

𝑑𝑤+
𝑑𝑤)

= 1×𝑤' = 𝑤' = 2

𝑑𝑧
𝑑𝑤'

=
𝑑𝑧
𝑑𝑤*

𝑑𝑤*
𝑑𝑤'

+
𝑑𝑧
𝑑𝑤+

𝑑𝑤+
𝑑𝑤'

= cos 𝑤' + 𝑤) = cos 2 + 3
= 2.58

= 𝑤'= 2

= 𝑤
)= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Compute derivatives with chain rule
from end to beginning:



Reverse Mode Automatic Differentiation 11
2

𝑤' = 𝑥' = 2
𝑤) = 𝑥) = 3
𝑤+ = 𝑤'𝑤) = 6
𝑤* = sin 𝑤' = 0.9
𝑤, = 𝑤+ + 𝑤* = 6.9
𝑧 = 𝑤,

𝑤' = 𝑥'

𝑤) = 𝑥)

𝑤* = sin(𝑤')

𝑤+ = 𝑤'𝑤)

𝑤, = 𝑤+ + 𝑤* 𝑧 = 𝑤,
= 2

= 3

= 0.9

= 6

= 6.9 = 6.9

For each output, can compute the
gradient w.r.t. all inputs in one pass!

= 𝑤'= 2

= 𝑤
)= 3

= cos𝑤! = −0.42

= 1= 1

= 1

Jacobian   9𝒛
9𝒙
=

9E!
9F!

… 9E"
9F!

⋮ ⋱ ⋮
9E!
9F#

… 9E"
9F#



CNN

11
3



Dilation 11
4



Deep Sets

11
5



What if  our data has no time structure? 

• Data may be variable in length but have no 
temporal structure à Data are sets of  values

• One option: If  we know about the data domain, 
could try to impose an ordering, then use RNN

• Better option: use system that can operate on 
variable length sets in permutation invariant way

–Why permutation invariant à so order doesn’t matter

11
6



Deep Sets 11
7

x1

w

𝜙

h1



Deep Sets 11
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x1

w

𝜙

h1

x2

𝜙

h2



Deep Sets 11
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x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT



Deep Sets 12
0

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Σ

[ℎ':.
Permutation invariant
operation: Sum, Max, …



Deep Sets 12
1

x1

w

𝜙

h1

x2

𝜙

h2 …

xT

𝜙

hT

Σ

[ℎ':.

F ywF



Examples 12
2

M. Zaheer et. al 2017

Outlier detection

Medical Imaging

M. Ilse et al., 2018

With more complex architecture

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712

