Introduction to Machine Learning:
Lecture 11

Michael Kagan

SLLAC

INFEN School of Statistics 2022
May 19, 2022

The Plan /

e JLecture 1
— Introduction to Machine Learning fundamentals

— Linear Models

* Lecture 2
— Neural Networks
— Deep Neural Networks
— Convolutional, Recurrent, and Graph Neural Networks

* Lecture 3
— Unsupervised Learning
— Autoencoders
— Generative Adversarial Networks and Normalizing Flows

Modern Neural Networks /

People are now building a new kind of software by
assembling networks ot parameterized functional
blocks and by training them from examples using
some form of gradient-based optimization.

- Yann LeCun, 2018

Modern Neural Networks /

People are now building a new kind of software by
assembling networks ot parameterized functional
blocks and by training them from examples using
some form of gradient-based optimization.

- Yann LeCun, 2018

* Non-linear operations ot data with parameters

* Layers (set of operations) designed to perform specific
mathematical operations

* Chain together layers to perform desired computation

* Train system (with examples) for desired computation using
gradient descent

Modern Neural Networks /

People are now building a new kind of software by
assembling networks ot parameterized functional
blocks and by training them from examples using
some form of gradient-based optimization.

- Yann LeCun, 2018

An Increasingly large number of people are defining the
networks procedurally in a data-dependent way (with
loops and conditionals), allowing them to change
dynamically as a function of the input data fed to
them. It's really very much like a regular program,
except it's parameterized

- Yann LeCun, 2018

The Plan /

* Deep Learning 1s a HUGE field
— O(10,000) papers submitted to conferences

* I'm will condense some parts ot what you would tind
In some lectures of a Deep Learning course

* Highly recommend taking the time to go more
slowly through lectures from a class. Online-available
Recommendations:

— Francois Fleuret course at University of Geneva

— Gilles Louppe course at University of Liege
— Yann LeCun & Alfredo Canziani course at NYU

https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://atcold.github.io/pytorch-Deep-Learning/

From Logistic Regression to Neural Networks /

Adding non-linearity

* What it we want a non-linear decision boundary?

— Choose basis functions, e.g: ¢(x) ~ {x?, sin(x), log(x), ...

1

py = 1|x) =

1+ e_WT¢(X)

Adding non-linearity /

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

e What if we don’t know what basis functions we want?

Adding non-linearity A

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
e What if we don’t know what basis functions we want?
* Learn the basis functions directly from data

d(x;u) Rm— R

— Where u is a set of parameters for the transtormation

Adding non-linearity

S

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
* What 1t we don’t know what basis functions we want?
* Learn the basis functions directly from data
d(x;u) Rm— R
— Where u is a set of parameters for the transtormation

— Combines basis selection and learning

— Several difterent approaches, focus here on neural networks
— Complicates the optimization

Neural Networks

* Define the basis functions j = {1...d}

0i(x; u) = G(ujTX)

Neural Networks /

* Define the basis functions j = {1...d}

0i(x; u) = G(ujTX)

e Put all u; € RM yectors into matrix U

G(ulTx)-
d(x; U) = o(Ux) = |olu™ e Rd

o(ug™x)

— © 1s a point-wise non-linearity acting on each vector element

Neural Networks

S

* Define the basis functions j = {1...d}

J J

e Put all u € R yectors into matrix U

J

o(x; U) = o(Ux) =

¢i(x; u) = o(u;'x)

o(u,x)
o(u,"x)

o(ug™x)

e Rd

— © 1s a point-wise non-linearity acting on each vector element

 Full model becomes
h(x; w, U) = wlo(x; U)

Feed Forward Neural Network A

— Hidden layer

Composed of neurons

¢(...) often called the
activation function

Multi-layer Neural Network A

* Multilayer NN

— Each layer adapts basis functions based on previous layer

Neural Network Optimization Problem /

* Neural Network Model: h(x) = w! o (Ux)

* Classification: Cross-entropy loss function

pi = p(yi = 1x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

Neural Network Optimization Problem A
* Neural Network Model: h(x) = w! o (Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

1

L(w,U) = > 3" (5 — h(x))’

1

Neural Network Optimization Problem A

* Neural Network Model: h(x) = w! o (Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

1

L(w,U) = > 3" (5 — h(x))’

1

* Minimize loss with respect to weights w, U

Minimizing loss with gradient descent:

* Parameter update:

dL(w,U)
AL D)
e —
T3u

* How to compute gradients?

Chain Rule — Symbolic Differentiation Painful! A

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: 6((;5:) = o(z)(1 — o(x))

* Chain rule to compute gradient w.r.t. w

SVLV - gi gv}:r Zy@ (1 =0 (h(x4)))o(Ux) + (1 = y;)o (h(x))o(Ux;)

* Chain rule to compute gradient w.r.t. u.

J
OL OLOh 8o
811]' - 8h 80’ (911j -

= w1 — o (hx))wjo(myae) (1 — o (wja))x;

T (1 = oo (hix) wjo(wyx) (1 - o(wyx:))x

Differentiation in Code

22

Baydin, Pearlmutter, Radul, Siskind.

2018. “Automatic Differentiation in
Machine Learning: a Survey.”
Journal of Machine Learning
Research (JMLR)

11 =T
ln+1 = 4111(1 = ln)

f(z) = Iy = 64z2(1 —z)(1 —2z)%(1 — 8z + 822)

Coding

Manual
Differentiation

f(x):
v=x
fori=1to3
v =4*xvx(1 - v)
return v

or, in closed-form,
£(x)

return 64%x* (1-x)* ((1-2#x)~2)
*(1-8*x+8*x*x) "2

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (d*v*(1-v), 4*dv-8*v*dv)
return (v,dv)

£ (x0) = f'(z0)

Exact

f(z) = 128z(1 — z)(—8 + 16z)(1 — 2z)*(1 —

8z +822)+64(1 —z)(1 —2x)*(1 — 8z +82%)% —
64z(1 — 22)%(1 — 8z + 822)% — 256z(1 — z)(1 —

2z)(1 — 8z + 82?%)2

£2(x):

return 128*x* (1 - x)*(-8 + 16*x)
((1 - 2%x) "2)(1 - 8*x + 8*x*x)
+64*(1 - x)*((1 - 2%x)"2)*((1
- 8%x + 8%x#*x)"2) - (64*x*(1 -
2%x) "2)*(1 - 8*x + 8*x*x) "2 -
256%x* (1 — x)*(1 - 2*x)*(1 - 8*x
+ 8*x#*x) "2

£’ (x0) = f'(z0)

Exact

£2(x):
h=0.000001
return (f(x+h) -£f(x)) /h

s iy (XO) ~ f"l:.l'..:l
Approximate

Automatic Differentiation A

* Exact derivatives for gradient-based optimization come from
running differentiable code via automatic differentiation

f(x) R" 5 R f(x) {..};
automatic
l differentiation
_(9r 9 df(x) {.};
Vf(x)—(axl,...,axn) X

* (Can compute derivatives not just of mathematical functions,
but derivatives of general purpose code with control flow,
loops, recursions, etc.

Forward and Reverse Mode A

* Derivatives can be computed in Forward Mode and
Reverse Mode

Forward Mode Single Evaluation: f(x): RN - R

/ df; df m\ Reverse Mode

dx, dx4 Primals >

Derivatives |

df(x) _
dx

4 dfm

|
dx TTodx
N N . =<E£§> . g

Reverse Mode Single Evaluation: f(x): R¥Y - RM

/df1 dfm b
dx1 o dx1
df(x) _ : . : Forward Mode
dx))) Primals
d—fl df—M Derivatives >
\dxy dxyn

dd _ ad dc

Chain Rule: % = E%

Backpropagation A

* Loss function composed ot layers of nonlinearity

LN (.9 (x)))

Backpropagation A

* Loss function composed ot layers of nonlinearity

L(¢pY(...0 ())
* Forward step (f-prop)

— Compute and save intermediate computations

PN (- 91 (0)

Backpropagation %

* Loss function composed ot layers of nonlinearity

L(¢pY(...0 ())
* Forward step (f-prop)

— Compute and save intermediate computations

PN (- 91 (0)

* Backward step (b-prop) oL _Z j OL

Backpropagation A

* Loss function composed ot layers of nonlinearity

L(¢pY(...0 ())
* Forward step (f-prop)

— Compute and save intermediate computations

PN (- 91 (0)

* Backward step (b-prop) oL :Z j OL

oL 3 095 OL

* Compute parameter gradients Fwe

. Training A

* Repeat gradient update of weights to reduce loss

— Each iteration through dataset is called an epoch

* Use validation set to examine for overtraining, and
determine when to stop training

O Training O Validation
0.5
0.4 underfitting overfitting
0.3
0.2
0.1
0.0

number of epochs

[graphic from H. Larochelle]

Vanishing Gradients A

* Major challenge in DL: Vanishing Gradients

* Small gradients slow down / block, stochastic
oradient descent = Limits ability to learn!

100 | | | I | |
~ Sigmoid Gradient — Layer 1
— Layer 2
— Layer 3
50r _ — Layer 4|
T e | Layer 5
0 | ' o e . |
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Slide credit: G. Louppe Gradients for layers far from the output vanish to zero.

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions A

ReLU(m)
1/(14e")
tanh(z) |[]

-3 -2 -1 0 1 2 3

* Vanishing gradient problem * Rectified Linear Unit (ReLU)

— Derivative of sigmoid: — ReLU(x) = max{o, x}
90 (x — Derivative is constant!
Y o (-o)
ox oReLU(x) | 1 whenx>0
— Nearly 0 when x 1s far from 0! 0x 0O otherwise

— Can make gradient descent hard! — ReLU gradient doesn’t vanish

Neural Network Decision Boundaries

32

. One neuron ; Two neuron

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

’ Thrée ne:Jronsz i Fouur neulrons 2

X2 .’ ’.. ° &
".%. - \:.'o .%‘;. .:"o
's 3. 05”;'0 > % .‘ %o °
-~ Py o. Lo by "‘. %, ® O
- $ or:?: 3a.; ° R.@. ’0’. .;:.:'. ‘..
w BEGF B s P 4
-2 -1 0 1 2 -2 -1 0 1 2 .. 002. 0* : :..O:g - .’.0. Py)
Five neurons Twenty neurons 'y .'::": :bM' :.':‘?. "'.;
) .:o! $. 00 2 § 5 L A 0‘85.
. o3 .00.0. ."”o‘f"f # ge” 'o'. S
o0 .‘o :0.0...0:.0£.. :‘..:0
oot ot
. >3
-05 05 ° '% [] >
Fifty neurol
ifty neurons - X,

SRR e \ 2-class classification

e 1-hidden layer NN
' L2 norm regularization

-2 -1
Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of non-linear
neurons (ReL.U, Sigmoid, and others) can

approximate continuous functions arbitrarily well
on a compact space of R"

f(x) = o(wix + b1) + o(wox + b)) + o(wsx + b3) + ...

/\/

N/ N

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of non-linear
neurons (ReL.U, Sigmoid, and others) can

approximate continuous functions arbitrarily well
on a compact space of R"

* NOTE!

— A better approximation requires a larger hidden layer and this
theorem says nothing about the relation between the two.

— We can make training error as low as we want by using a larger
hidden layer. Result states nothing about test error

— Doesn’t say how to find the parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Neural Networks A

) hidden layer 1 hidden layer 2 hidden layer 3
input layver

)
N~ - R
o P e output layer
2
#
A = S
S 7SS S
——_/

* As data complexity grows, need exponentially large number of neurons in
a single-hidden-layer network to capture all structure in data

* Deep neural networks factorize the learning of structure in data across
many layers

* Difficult to train, only recently possible with large datasets, fast computing
(GPU / TPU) and new training procedures / network structures

Neural Network Zoo

36

e Structure of the networks, and
the node connectivity can be

adapted for problem at hand

* Moving inductive bias from
feature engineering to model

design

— Inductive bias:
Knowledge about the problem

— Feature engineering:
Hand crafted variables

— Model design:
The data representation and the
structure of the machine
learning model / network

QO Backfed Input Cell
Input Cell

/A Noisy Input Cell

@ Hidden Cell

. Probablistic Hidden Cell

. Spiking Hidden Cell

. Output Cell

. Match Input Output Cell

. Recurrent Cell

. Memory Cell

. Different Memory Cell
Kernel

QO Convolution or Pool

Markov Chain (MC)

Deep Convolutional Network (DCN)

\><\>{|><|><\

Generative Adversarial Network (GAN)

XA

B
W

0

Deep Residual Network (DRN)

Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

A AW

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

» et Ot

Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
) o) - -

o

AYAN
\VAVZ

Recurrent Neural Network (RNN)
o o

Y Y
RN ATTa

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

N
X7 N/

Deep Belief Network (DBN)

ha

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

. P 7

SO O O
N >_< \O/o O\o/
2P, N e D
/o\o/ >_< \O/O O\O/
G Do Ny oG
g g g
@ X O Ol

Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

e

Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

s A e o

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/

Neural Network Zoo — “Optimization” Perspective /

* A single layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective A

* A single layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

* Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeott prediction

under-parameterized /)

Test risk

under-fitting ; over-fitting over-parameterized

Test risk

i ﬁ "Y'm “classical” “modern”
Belkin et. al. 2018 E Q?: regime interpolating regime
N : :
> o Training risk > o Training risk:
sweet spot\: - _ i . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve
arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped
risk curve (i.e., the “classical” regime) together with the observed behavior from using high complexity
function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The
predictors to the right of the interpolation threshold have zero training risk.

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective A

* A single layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

* Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeott prediction

— But we must control that:

* Gradients don’t vanish
* Gradient amplitude is homogeneous across network

* Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective A

. A single layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

* Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeott prediction

* Major part of deep learning is trying to choose the
right function...

... Instead of trying to improve training with
regularization and new optimizers

— Need to make gradient descent work, even at the cost of a
substantially engineering the model

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Convolutional Neural Networks

S

Convolutional Neural Networks A

* When the structure of data includes “invariance
to translation”, a representation meaningtul at a
certain location can / should be used everywhere

* Convolutional layers build on this 1dea, that the
same “local” transformation 1s applied everywhere
and preserves the signal structure

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

1D Convolutional Layer Example

S

Input
1 4 -1 0 -2 3
. vy B
1 2 0 -1
Output

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

1D Convolutional Layers A

e Data: x € RM
e Convolutional kernel of width k: u € R¥

e Convolution x &) u is vector of size M-k+1

k-1

(x®u); = 2 Xi+pUp

b=0

* Scan across data and multiply by kernel elements

Convolutional Filters A

Convolution can implement in particular differential operators, e.g.

(0,0,0,0,1,2,3,4,4,4,4)® (—1,1) = (0,0,0,1,1,1,1,0,0,0).

J’_H—H_H@)Lp:;m—r_

or crude “template matcher”, e.g.

B 1 v .

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels A

Input
Output
—
w /
N
Kernel
“/)
H ”1
—
C

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels /

Input
Output
w
W-w+1
N N
Kernel
/)
H—-h+1
H ”I
—
C
v
WV e
) 1
C

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels A

Input
Output

Kernels W-w+1

D :
, H—-h+1
I

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolutional Layer A

* Input data (tensor) x ot size CXHXW
— C channels (e.g. RGB 1n images)

 JL.earnable Kernel u of size CXhXw
— The size hXw is the receptive field

C-1h-1w-1

(x® u)l] E(xc@)uc)u Zzzxcn+lm+]ucnm

c=0n=0m=0

* Output size (H—h+))x(W —w + 1) for each kernel
— Often called Activation Map or Output Feature Map

Stride — Step Size When Moving Kernel Across Input A

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Padding — Size of Zero Frame Around Input

51

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Shared Weights: Economic and Equivariant A

* Parameters are shared by each neuron producing an
output in the activation map

* Dramatically reduces number of weights needed to
produce an activation map

— Data: 256X256X3 RGB image
— Rernel: 3X3X3 — 27 weights

— Fully connected layer:
« 256X256X3 inputs = 256X256X3 outputs = 0(101%) weights

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791

Shared Weights: Economic and Equivariant

.

* Parameters are shared by each neuron producing an

output In the activation map

* Dramatically reduces number of weights needed to

produce an activation map

* Convolutional layer does pattern matching at any

location = Equivariant to translation

Y. LeCun et. al. 1998

~
/]

e
7]

o)

*

,I

"

L’
s]
joasa|
Ee @

»

Lokt |
s 8
E. 8

3

~

4

LA RIS R

2 RESEARCH

https://ieeexplore.ieee.org/document/726791

. Pooling A

* In each channel, find max or average value ot
pixels in a pooling area of size hXw

Input

Output

rw

sh

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

\ Pooling A

* In each channel, find max or average value ot
pixels in a pooling area of size hXw

e [nvariance to

permutation within input

pooling area |

* Invariance to local
perturbations Output T

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Normalization A

* Maintaining proper statistics of the activations and derivatives is a
critical 1ssue to allow the training of deep architectures

“Training Deep Neural Networks 1s complicated by the fact that
the distribution of each layer’s inputs changes during training,
as the parameters of the previous layers change. This slows

down the training by requiring lower learning rates and caretul
parameter initialization ...”

loffe, Szegedy,
Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018

Batch Normalization

.

* During training batch normalization shifts and rescales according

to the mean and variance estimated on the batch.

— During test, use empirical moments estimated during training

* Per-component mean and variance on the batch

B
1
Mpatch = B Xb
b=1
B

1
— 2
Ubatch = § § (xb - mbatch)
1

* Normalize and compute output Vb = 1...B

_ Xp — Mpatch
\/vbatch te€

Zp

yp =yYOz, +

— ¥ and 8 are parameters to optimize

081

0.5

0.4

07

s y
0.6*7+ '

- i
-

= = =Inception
== BN-Baseline
++ BN-x5
— BN-x30
+ '+ BN-x5-Sigmoid
4 Steps to match Inception

5M

L . T
10M 15M 20M 25M 30M

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of

training steps.

Convolutional Network A

* A combination of convolution, pooling, ReLLU,
and tully connected layers

convolution linear max convolution
rectification pooling

convolution layer pooling layer

Convolutional Networks

59

Dense (1000)

t
Dense (4096)
t
Dense (4096)

t

3x3 MaxPool, stride 2
t

Dense (10) 3x3 Conv (384), pad 1
i t

Dense (84) 3x3 Conv (384), pad 1
| t

Dense (120) 3x3 Conv (384), pad 1
t t

2x2 AvgPool, stride 2 3x3 MaxPool, stride 2
t t

5x5 Conv (16) 5x5 Conv (256), pad 2
t t

2x2 AvgPool, stride 2 3x3 MaxPool, stride 2
t

5x5 Conv1(6), pad 2 11x11 Conv (96), stride 4

t t

image (28x28)

image (3x224x224)

LeNet

(LeCun et al, 1998)

AlexNet

(Krizhevsky et al, 2012)

ImageNet Classification

>
ha
K

N
K
R
W
—

Hierarchical Composition of Features

Low-Level
Feature

—

Mid-Level
Feature

High-Level
Feature

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Ferqus 201 3]

Deep CNNs

S

* To go deeper,
architectures become
much more complex

— Multiple convolutions
in parallel and
recombined

— Skip connections

e Recent ResNet-152
has 152 layers!

Credits: Deep Dive in Deep Learning

Dense

t
Global AvgPool

I

(z 5 Y
L Il] L -]

3x3 MaxPool

=

z S
Il

Y
| —
][] []
J

(]
(N =~
t

2x I

L
ry
|

3x3 MaxPool

4
3x3 Conv

t

1x1 Conv

}
3x3 MaxPool

}
7x7 Conv

GoogleNet

(Szegedy et al, 2014)

| Global Average Pool |

| 3x3 Max Pooling |

A

Batch Norm

3

7x7 Conv

ResNet

(He et al, 2015)

Je—— s¥oo|g 1eNsey Xg¢ ——————|

https://d2l.ai/

Residual Connections

S

* Tramning very deep networks 1s made possible
because of the skip connections in the residual

blocks. Gradients can shortcut the layers and pass

through without vanishing.

T

Activation function

Weight layer

4

Activation function

4

Weight layer

Credits: Deep Dive in Deep Learning , and G. Louppe

T

Activation function

f(x) + x

Weight layer

)

Activation function

A

Weight layer

A

-—-d

https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md

Benefits of Depth

S

152 layers

‘ 22 layers] ‘ 19 Iayers ’

\67

357 I I

ILSVRC'15 ILSVRC'14 ILSVRC'14
ResNet GoogleNet VGG

8 layers

8 layers]

- e - -
. .

ILSVRC'13

ILSVRC'12
AlexNet

28.2

shallow

ILSVRC'11

ILSVRC'10

Recurrent Neural Networks

S

Sequential Data A

* Many types of data are not fixed in size

* Many types of data have a temporal or
sequence-like structure

— Text
— Video
— Speech
— DNA

* MLP expects tixed size data

* How to deal with sequences?

Sequential Data A

* Given a set X, let S(X') be the set of sequences,
where each element of the sequence x; € X

— X could reals RM, Integers M etc.

— Sample sequence x = {xq1, X5, ..., X7}

* Tasks related to sequences:
— Classification f:SOO) > |V 1p;, =1}
— Generation f: R% - S(X)
— Seq.-to-seq. translation f: S(X) - S(Y)

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent States /

* Input sequence x € S(R™) of wvarzable length T (x)

* Standard approach: use recurrent model that
maintains a recurrent state h; € R? updated at each

time step t. Fort =1, ...,T(x):
hiy1 = o(x¢, he; 0)

— Simplest model:

¢(xt, ht, W, U) — O-(Wxt + Uht)

* Predictions can be made at any time t from the
recurrent state

Y: = Y(hs; 0)

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks

A

ho

Credit: F. Fleuret

h

x1

https://fleuret.org/dlc/

Recurrent Neural Networks

A

hy

X1

X2

°%hT—1|7'0 hr
| L
XT—1 xT
J

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks

S

ho

hy

x1

x2

XT—1

xT

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks /

[0.98] = Positive Sentiment

YT

f .
T Sentiment
Analysis
hO'#“’th'#-‘p e 7 0%"T—1|7‘0%h7‘

i i i i

X1 x2 XT —1 XT
w V. 2 Vi J

The movie was great

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks

Prediction per sequence element

Credit: F. Fleuret

Although the number of steps T'(x) depends on x, this is a standard

A A

341 YT—1 Yr
J v v v
1 1 1
ho | ® >h1=(¢ ¢%h7-_1}7-¢ ht

| 1 1 L

X1 X2 XT 1 xT

2 L J/

computational graph and automatic differentiation can deal with 1t as
usual. This 1s known as “backpropagation through time” (Werbos, 1988)

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf

Stacked RNN

.

RNN

RNN

(2)
h'l:T

RNN

(V)
hl:T

Stacked RNN

.

Two Stacked LSTM Layers

(2) ! 1 (N)
h'l:T RNN hl:T
Zoom in
h(()z) ¢,(2)) r® »®@) h(T) : ¢(2) h(TZ>
ho o [—>| b1 [@ 0%"T—1I7-¢Hh7-
X1 x2 XT—1 xT
Z Z

2"d RNN Layer

1t RNN Layer

Bi-Directional RNN

—>
Forward in time RNN Layer

h” | ¢® —> |n || ¢ 9O > |2, | F——1® [—> | n{’
w X1 X2 XT-1 X7
Ol P e I IO $@ $@] |1, | €=—¢@ |—— |

Backward in time RNN Layer
6—-

\ Gating A

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Long Short Term Memory (LSTM)

* Gating:

— network can grow very deep,

in time = vanishing gradients.

o

el

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through

squashing non-linearity.

 LSTM:

— Add internal state separate
from output state

— Add input, output, and
forget gating

;@
Y

4& 5 S0t

TTTT

1

5

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Comparison on Toy Problem

S

Learn to recognize palindrome
Sequence size between 1 to 10

Slide credit: G. Louppe

Y

O = O = =

Cross-entropy

0.6 -

e
(%))
1

o
B
1

0.3~

10

Epoch

15

—— RNN
-== Stacked RNN
—-= BiRNN
— LSTM

20

25

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md

Examples

79

Y. Wu et al, 2016

Neural machine translation

Yy, —> y, > —> </s>
~ % PRt 4

AT T T T T I . ~h
Encoder LSTMs ; *
GPU8
8ilayers

GPU3

GPU2

GPU2 |

GPUL |

|
Encoder €@ |[—| e |[—| e2 |—>| e3 |—| €4 |—| s |—| 66
Decoder do e ds e dz S ds

GPU3

GPU2

GPU1

https://arxiv.org/abs/1609.08144

Examples

MariFlow - Self-Driving Marlo Kart w/Recu

Thiy 35 a Saurrers
neural network that I've
trained to play mario
Kart like me. This NN is
very different from
mMarI/o, because its goal
§lis not to win, but rather
jto predict what
icontroller inputs I would
use in any given
situation. The display on
the bottom shows what the
neural network sees, and
its internal state and
controller predictions.

\‘"u .-.- = l :*-.-.I . - b.. It's currently trying

'. every cup in 50cc on

repeat. The goal is to
AN JT‘? "ﬁ"'-'- fi:-f't'i— T e
- actually present. If you

%.:r--. L 'L. 'J-!‘.r..- see something interesting

---L- o clip it so I can see it

-3 ‘- 11‘-£ FM later and potentially
MORE VIDEOS 'f """" r t

include it in my video!

- N1 =-=4- ES

") 5347550 2 YouTube

Self-driving Mario Kart with RNN: YouTube video

https://youtu.be/Ipi40cb_RsI

Examples

S

Text-to-speech synthesis

Mel Spectrogram

5 Conv Layer
Post-Net

T

Waveform
Samples

*

WaveNet

l [Linear

MoL

" J

[2 Layer I l 2 LSTM __Projection
Pre-Net Layers ST

Stop Token

i) | Projection |

Location

Sensitive
Attention

T A Character 3 Conv
P Embedding Layers

Shen et al., 2017

Bidirectional
LSTM

https://arxiv.org/abs/1712.05884

Graph Data

Graph Data A

h

* Sequential data has single (directed) connections
from data at current time to data at next time

* What about data with more complex dependencies

Image Credit: |. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654

\ Graphs A

Edge

|

Vertex / node

* Adjacency matrix: 4;; = 6(edge between vertex i and j)
e Each node can have teatures

* Each edge can have features, e.g. distance between nodes

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

A

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

myF

mG—F

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

~ t — f'(ht—l)

m_]—)l — O(AU mt)

ht = GRU(h' 1, X;m!

_[—)I

Image Credit: |. Henrion

)

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

Algorithm 1 Message passing neural network

Require: N x D nodes x, adjacency matrix A
h «+—Embed(x)

fort=1,..., T do
m < Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples

90

Quantum chemistry with graph networks

OH oH, © z2=(z, 2z, - Z, |
it o B
OH 1" 12 in
@ /_/=O D Dy Dy, Dy,
/ . H
o Dnl DtE DM

Feedback loop

Gaussian expansion
@ Hyperbolic tangent
@ Element-wise product

®/® etement-wise sum

- jw‘((w’n‘.-*)
> (wedyent)) |

Schutt et al. 2017

Mean abs. error (kcal mol™ ")

Total energy (kcal mor') &

Molecules with = 20 atoms

T
100 200

https://www.nature.com/articles/ncomms13890

Examples

Learning to simulate physics with graph networks

(@ X'

(b) ENCODER

— (0

X—

(¢) Construct graph

© X
© & . e?.j
¢ © X; \A
¢ © ¢
<

Learned simulator, sy

G

DECODER

G.M >

o —1
GN? PROCESSOR
>(+ Gl S GM—l r
(d) Pass messages
m+1
&‘i’ e k'::’ez 1+
i I ’V = f:k l.;v:n+1
A
k L

_>Y

(e) Extract dynamics info
C

C
@ —> [)
VzM © € Yi

¢ © ¢
C

Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dy, and a fixed update procedure.
(b) The dp uses an “encode-process-decode” scheme, which computes dynamics information, Y, from input state, X . (¢) The ENCODER
constructs latent graph, G°, from the input state, X . (d) The PROCESSOR performs M rounds of learned message-passing over the latent

graphs, G°, . ..

Sanchez-Gonzalez et al. 2020

: " Eopa (e) The DECODER extracts dynamics information, Y, from the final latent graph, GG g

https://arxiv.org/abs/2002.09405

\ Summary A

e Neural Networks allow us to combine non-linear
basis selection with feature learning

— Care needed to train them and ensure they don’t overfit

* Deep neural networks allow us to learn complex
function by hierarchically structuring the feature
learning

* We can use our inductive bias (knowledge) to define
models that are well adapted to our problem

* Many neural networks structures are available for
training models on a wide array of data types.

S

End of Lecture II

A

Automatic Differentiation

Automatic Differentiation Example A

* All numerical algorithms, when executed, evaluate to
compositions of a finite set of elementary operations with
known derivatives

— Represent as a computational graph showing dependencies

f(a,b) = log(ab)

wran = (33

Automatic Differentiation Example %

* All numerical algorithms, when executed, evaluate to
compositions of a finite set of elementary operations with
known derivatives

— Represent as a computational graph showing dependencies

2
f(a, b): 5 6
c=a*h C 1.791
d = log(c) * =@ - d
return d
b
3
f(2, 3) = 1.791 ~_

Primals

Automatic Differentiation Example A

* All numerical algorithms, when executed, evaluate to
compositions of a finite set of elementary operations with
known derivatives

— Represent as a computational graph showing dependencies

2 % p=3
da
f(a, b): 5
c=a*b c 1.791
d = log(c) * =@ - d
return d
b5 94 _1_ 0166
%—a—Z dc ¢
3
(2, 3) = 1.791
. ad dd dc
df(2,3) = [0.5, ©.333] Chain Rule: —~ =~~~ = 0.166 % 3 = 0.5

Automatic Differentiation A

Problem: Compute gradients of z
with respect to inputs {xq, x5}

Z = Sin(xl) + X1X9

Automatic Differentiation

Wl = x1
Wy = X»
W3 = WiW;

w, = sin(w,)
Ws = W3 + W,
Z = Wsg

Problem: Compute gradients of z

with respect to inputs {xq, x5}

Z = Sin(xl) + X1X9

Organize as a computational Graph

* W, = sin(w;)

W3 = Wi W,

Ws = W3 + W,

N
e

" Z = Wy

Automatic Differentiation

Wl = x1
Wy = X»
W3 = WiW;

w, = sin(w,)
Ws = W3 + W,
Z = Wsg

Problem: Compute gradients of z | dw,)
. . d -
with respect to inputs {xq, x,} s 1
. . dx,
We know the gradients of simple dws _ dws
. . dW1 - W2 sz "1
functions: sin(x),x *y,x + vy ... dw,
d_V|/1 = cos(w;)
Chain rule: % _ gﬂ_ 1
dz dz dw, s W4
dw, Z dw, dw;
1 peparents Wp Wi
' w, = sin(wy) \
/W5=W3+W4 Y Z = Wg

W3 = Wi W,

Automatic Differentiation

Wl = x1
Wy = X»
W3 = WiW;

w, = sin(w,)
Ws = W3 + W,
Z = Wsg

Problem: Compute gradients of z
with respect to inputs {xq, x5 }

NOT going to find analytic derivative

WILL find a way to compute value of
gradient for a given input point

* W, = sin(w;)

W3 = Wi W,

Ws = W3 + W,

N
e

" Z = Wy

Forward Mode Automatic Differentiation

Wy =X = g For each input, from input to output
Wo = X» = . .
Wi = W21W2 —6 sequentially, evaluate graph and gradients

wy =sin(wy) =0.9 | 214 store values
W5 :W3+W4 :6.9

Z = Wsg
Wy = Xq » w, = sin(w;)
= = 0.9 \
Ws = W3 + W, * Z = Wg
/ = 6.9 = 6.9
W, = X, > W3 = Wi W, 3_va§:1 dd_z:1
— — W5

dWZ 1 dW3
dx, dw,

Forward Mode Automatic Differentiation

W1:x1:2
W2:x2:3

W3 = WiWw, = 6
Wy = Sin(Wl) = 0.9
Ws = W3 + w, = 6.9

and store values

For each input, from input to output

sequentially, evaluate graph and gradients

=1%x2x1*x1 =2

- = —]

dWZ
de

" Z = Wy

Z = Wsg
Apply chain rule with multiplication

dz dw,dwszdws dz
dx, dx, dw, dwsdwc

W, = X1 > Wy = Sin(Wl)

=2 =0.9 \
Ws = W3 + W,
L7 =69
Wy = X, W3 = WiW; /’/ dws _
I > — r dws

Forward Mode Automatic Differentiation

Wy =x; =2 Forward Mode allows us to compute the gradient
Wy =X =3 of one input with respect to all the output
W3 = WiW, = 6
w, = sin(w;) = 0.9 ydzq dZp\
W5:W3+W4:6.9 d e d
Z=Wws : dz 1 X1
Jacobian —=1 .
x le dZM
dxp dxpy

[f we have 1 output (Loss) and many inputs 2 SLOW!

Wy = Xq » w, = sin(wy) \

W5:W3+W4 ; Z = Wsg
v
g = 6.9 = 6.9
7’
— 2 e == > — é dW3 dWS

dWZ 1 dW3
dx, dw,

Reverse Mode Automatic Differentiation

W1:x1:2
W2:x2:3
W3:W1W2:6

Wy = Sin(Wl) = 0.9
Ws = W3 + w, = 6.9

Evaluate graph and store values

Z = W5
Wl = xl > W4_ = Sin(Wl)
=2 = 0.9
Wy = X» W3 = W1 W,
3 =

Ws = W3 + W,
=6.9

N
e

" Z = Wy

= 6.9

Reverse Mode Automatic Differentiation 1o

Wy =X, = 2

W, =X, =3

Wi = Wiw, =6

w, = sin(w;) = 0.9
Ws = W3 + w, = 6.9
Z = Wsg

Compute derivatives with chain rule
from end to beginning:

dz
dW5

* W, = sin(w;)
=09

=6.9 "7 =69

W3 = Wi W,

Reverse Mode Automatic Differentiation 1o

Wy =X, = 2
W, =X, =3
W3 = wiw, = 6 from end to beginning:
w, = sin(w;) = 0.9
Ws = W3 + w, = 6.9
Z = ws dz

dW5
dz dz dws

dws N dws dws

Compute derivatives with chain rule

1x1=1

Ws = W3 + W, * Z = Wsg

Wy = Xq » w, = sin(wy) \
1 =69 =" =69
7’

Wy = X5 » W3 = WiWy s =1 —

Reverse Mode Automatic Differentiation 1o

Wi = X1 = 2
Wy = Xy = 3
W3 = wiw, = 6 from end to beginning:
Wy = Sin(Wl) = 0.9
Ws = w3 +w, = 6.9

Compute derivatives with chain rule

Z = Wg ﬁz
dW5
dz dz dW5—1x1—1
dws dwsdws B
dz dz dW5_1><1_1
dw, dwsdw, B
) | Ise =1
Wl =x1 » W4_ :SIH(W]_) \\
=2 = 0.9 T~
W5:W3+W4 :Z:WS
1 =69 =" =69
Wy = X; o W3 =Wy W, A,/’zl —

Reverse Mode Automatic Differentiation

W1:x1:2
W2:x2:3
W3:W1W2:6

Wy = Sin(Wl) = 0.9
Ws = W3 + w, = 6.9

Compute derivatives with chain rule

from end to beginning:

Z:WS
Wi = Xq
Wy = X

= 3 B

dz
dW5 B
dz dz dW5—1x1—1
dws dwsdws B
dz dz dW5_1><1_1
dw, dwsdw, B
Yo B
* ' w, = sin(w;) _ 1
=0.9 RN
///
W3 = W{W, A// =1
- —6

dz dz dw;
sz B dW3 dW2

Ws = W3 + W,

= 6.9 N

:Z:WS

=6.9

:1XW1:W1:2

Reverse Mode Automatic Differentiation A

Wi = X1 = 2
Wy = Xy = 3
W3 = wiw, = 6 from end to beginning:
Wy = Sin(Wl) = 0.9
Ws = w3 +w, = 6.9

Compute derivatives with chain rule

— dz dz dz dw
Z = Ws L = > = Ixwy, = wy = 2
dws dw, dwsdw,
dz dz dW5—1x1—1
dws; dwsdws - dz _ dz dwy N dz dws
dz _ dz dWS —1x1 =1 dWl dW4 dW1 dW3 dWl
dw, dwsdw, = cos(w;) + w, = cos(2) + 3
= 2.58
= cosw; = —0.42 ’
_ DN D S =1
Wy = X » w, = sin(w;) S
= N = 0.9 R
\\&b\\\ W5:W3+W4 " Z = Wy
PN, 71 =69 “--1 =69
Wy = X; o W3 =Wy W, A,/’zl —
=3 Z W= 2 =6

Reverse Mode Automatic Differentiation

Wl == x1 = 2
W, = x, =3 For each output, can compute the
W3 = wiw, = 6 gradient w.r.t. all inputs in one pass!
Wy = Sin(Wl) = 0.9
Ws = w3 +w, = 6.9 dzq dzpy
Z = Wsg dxl - dxl
. dz . .
Jacobian — = : :
X le dZM
dxy| 7 dxy
= cosw; = —0.42 I
D : v =1
Wl == X1 » W4_ = Sln(Wl) \\
=2 PO = 0.9 \
\\@\\\ W5:W3+W4 " Z = Wy
RN -1 =69 “--1 =69
&~ - . _
Wz = X7 | Wy =wawy T2 =1 =
3 = W= 2 -

CNN

Dilation

Deep Sets

What if our data has no time structure?

* Data may be variable 1n length but have no
temporal structure = Data are sets of values

* One option: If we know about the data domain,
could try to impose an ordering, then use RNN

* Better option: use system that can operate on
varlable length sets in permutation invariant way

— Why permutation invariant = so order doesn’t matter

Deep Sets

Deep Sets

— &

X2

Deep Sets

— &

— &

X2

Xt

Deep Sets

— &

X2

Permutation invariant

/ operation: Sum, Max, ...

— &

Xt

Deep Sets

F — vy
1
ﬁl:T
h, hy
A A

— &

X2

— &

Xt

Examples

12

Medical Imaging

With more complex architecture

Outlier detection

e :
s

) 455

s

1R ,*.“*u"“”
Ep“ﬁ faﬂ‘:" -

(<) (d)

Figure 5. (a) H&E stained histology image. (b) 27x27 patches
centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Heatmap: Every patch from (b)
multiplied by its corresponding attention weight, we rescaled the
attention weights using aj, = (ax —min(a))/(max(a) —min(a)).

M. llse et al., 2018

black hair &
brown hair

. Zaheer et. al 2017

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712

