
Introduction to Machine Learning:
Lecture I

Michael Kagan

SLAC

INFN School of Statistics 2022
May 19, 2022

The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Convolutional, Recurrent, and Graph Neural Networks

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Generative Adversarial Networks and Normalizing Flows

2

Long History of Machine Learning 3

Vinyals et. al. 2019Rosenblatt 1958, 1960

𝑓 𝑥 = $
1 𝑖𝑓 '

!

𝑤!𝑥! + 𝑏 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron AlphaStar

https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

Machine Learning in HEP 4

Particle Tagging

Simulation Based Inference

Uncertainty Mitigation

Signal Classification

Fast S
imulation

Design Optimization

+ More! Check out The Living Review of ML in HEP

Unfolding

Anomaly Detection

https://iml-wg.github.io/HEPML-LivingReview/

What is Machine Learning?

• Giving computers the ability to learn without
explicitly programming them (Arthur Samuel, 1959)

• Statistics + Algorithms

• Computer Science + Probability + Optimization
Techniques

• Fitting data with complex functions

• Mathematical models learnt from data that
characterize the patterns, regularities, and
relationships amongst variables in the system

5

Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest,
typically via random variables

– Chosen model depends on the task / available data

6

[Rogozhnikov]

Classification

Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest,
typically via random variables

– Chosen model depends on the task / available data

7

Regression

x

y

Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest,
typically via random variables

– Chosen model depends on the task / available data

8

Clustering

[Bishop]

Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest,
typically via random variables

– Chosen model depends on the task / available data

9

Dimensionality
Reduction

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest,
typically via random variables

– Chosen model depends on the task / available data

• Learning: estimate statistical model from data
– Supervised learning
– Unsupervised Learning
– Reinforcement Learning
– …

• Prediction and Inference: using statistical model to
make predictions on new data points and infer
properties of system(s)

10

Learning 11

• Supervised Learning
– Classification
– Regression

• Unsupervised Learning
– Clustering
– Dimensionality reduction
– …

• Reinforcement learning
[Ravikumar]

Notation

• X Î Rmxn

• x Î Rn(x1)

• x Î R
• X
• {xi}1m

• y Î I(k) / R(k)

12

Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold
Sets are script
Sequence of vectors x1, …, xm
Labels represented as

- Integer for classes, often {0,1}. E.g. {Higgs, Z}
- Real number. E.g electron energy

• Variables = features = inputs
• Data point x = {x1, …, xn} has n-features

• Typically use affine coordinates:
y = wTx + w0→ wTx

→ w ={w0, w1, ... , wn}
→ x ={1, x1, ... , xn}

Probability Review

• Joint distribution of two variables: p(x,y)

• Marginal distribution: 𝑝 𝑥 = ∫𝑝 𝑥, 𝑦 𝑑𝑦

• Conditional distribution:

• Bayes theorem:

• Expected value:

• Normal distribution:
– x~N(µ, s) →

13

p(x) =
1p
2⇡�

exp
⇣
� 1

2

(x� µ)2

�2

⌘
2

E[f(x)] =

Z
f(x)p(x)dx

p(y|x) = p(x|y)p(y)
p(x)

p(y|x) = p(x, y)

p(x)

Supervised Learning

• Given N examples with observable features {xi Î X} and
prediction targets {yi Î Y}, learn function mapping h(x)=y

14

Classification:
Y is a finite set of labels (i.e. classes)
denoted with integers

x

y

Regression:
Y is a real number

Unsupervised Learning

Given some data D={xi}, but no labels, find structure in data

Clustering: partition the data into
groups D={D1 È D2 È D3 … È Dk}

15

[Bishop]

Dimensionality reduction: find a low
dimensional (less complex) representation
of the data with a mapping Z=h(X)

Image Credit - Link

Density estimation and sampling:
estimate the PDF p(x), and/or learn to
draw plausible new samples of x

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

Reinforcement Learning

• Models for agents that take actions depending on
current state
• Actions incur rewards, and affect future states

(“feedback”)

• Learn to make the best sequence of decisions to
achieve a given goal when feedback is often delayed
until you reach the goal

16

[Ravikumar]

Deep Reinforcement Learning with AlphaGo 17

Nature 529, 484–489 (28 January 2016)

Supervised Learning: How does it work? 18

Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss

19

h(x; w)
Function with

adjustable
parameters

Loss
Function

Compare
prediction
with true

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)

Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
– Use a labeled training-set to compute loss

– Adjust parameters to reduce loss function

– Repeat until parameters stabilize

20

h(x; w)
Function with

adjustable
parameters

Loss
Function

Compare
prediction
with true

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

L(W,X)

Reminder: Empirical Risk Minimization

• Framework to design learning algorithms
– L(⋅) is a loss function comparing prediction h(⋅) with target y

– W(w) is a regularizer, penalizing certain values of w
• l controls how much penalty… a hyperparameter we have to tune

• Learning is cast as an optimization problem

21

Average expected loss Model regularization

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)

Example Loss Functions

• Square Error Loss:
– Often used in regression

• Cross entropy:
– With y Î {0,1}
– Often used in classification

• Hinge Loss:
– With y Î {-1,1}

• Zero-One loss
– With h(x; w) predicting label

22

L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

- Square Error
- Cross Entropy
- Hinge
- Zero-one

[Bishop]

Least Squares Linear Regression 23

Least Squares Linear Regression

• Set of input / output pairs D = {xi , yi}i=1…n
– xi Î Rm

– yi Î R

• Assume a linear model
h(x; w) = wTx

• Squared Loss function:

• Find w* = arg minw L(w)

24

L(w) =
1

2

X

i

�
yi � h(xi;w)

�2

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n
– Design matrix X Î Rnxm

– Target vector y Î Rn

25

• Rewrite loss:

• Minimize w.r.t. w:

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n
– Design matrix X Î Rnxm

– Target vector y Î Rn

26

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

27

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

28

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

• Likelihood function:

29

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆

Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error:
– Noisy measurements, unmeasured variables, …

• Then

• Likelihood function:

30

Squared
loss function!

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆

Linear Regression Example

• Reconstructed Jet energy vs. Number of primary vertices

31

Eur. Phys. J. C (2015) 75:17

Linear Classification 32

Classification

• Learn a function to separate
different classes of data

• Avoid over-fitting:
– Learning too fined details about

your training sample that will
not generalize to unseen data

33

Linear discriminant Nonlinear discriminantRectangular cuts

y=0

y=1

x1

x2

x1

x2 y=0

y=1

x1

x2

y=0

y=1

x1

x2

y=0

y=1

[H. Voss]

Linear Decision Boundaries
• Separate two classes:
– xi Î Rm

– yi Î {-1,1}

• Linear discriminant model
h(x; w) = wTx+b

34

h(x)

• Decision boundary defined by hyperplane

h(x; w) = wTx+b = 0

• Class predictions: Predict class 0 if h(xi ; w) < 0, else class 1

[Bishop]

h(x) < 0

h(x) = 0

h(x) > 0

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?

35

L(w) =
1

2

X

i

(yi �wTxi)
2

[Bishop]

Linear Classifier with Least Squares?

• Why not use least squares loss with binary targets?
– Penalized even when predict class correctly
– Least squares is very sensitive to outliers

36

L(w) =
1

2

X

i

(yi �wTxi)
2

What you want

What you get

[Bishop]

Linear Discriminant Analysis 37

• Goal: Separate data from two classes / populations

x2

x1

Linear Discriminant Analysis 38

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels: y Î {0,1}

Red: Y=0 Blue: Y=1

x2

x1

Linear Discriminant Analysis 39

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels: y Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

Likelihood:
Distribution of features
for a given class

Prior:
Probability of each class

Linear Discriminant Analysis 40

• Goal: Separate data from two classes / populations

• Data from joint distribution (x, y) ~ p(X, Y)
– Features: x Î Rm

– Labels: y Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

• Assume likelihoods are Gaussian

𝑝 𝑥 𝑦 =
1

2𝜋 !|Σ|
exp −

1
2
𝒙 − 𝝁"

#Σ$%(𝒙 − 𝝁")

Predicting the Class

• Separating classes à Predict the class of a point x

41

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘
• Want to build a classifier to predict

the label y given and input x

Predicting the Class

• Separating classes à Predict the class of a point x

42

Bayes Rulep(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x

43

Bayes Rule

Marginal
definition

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣
log p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x

44

Bayes Rule

Why?

Marginal
definition

Logistic Sigmoid Function 45

Logistic Sigmoid

�(z) =
1

1 + e�z

Predicting Classes with Gaussian Likelihoods 46

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

Constant w.r.t. xLog-likelihood ratio

Predicting Classes with Gaussian Likelihoods

• For our Gaussian data:

47

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

= �
⇣
log p(x|y = 1)� log p(x|y = 0) + const.

⌘

= �
⇣
� 1

2
(x� µ1)

T⌃�1(x� µ1) +
1

2
(x� µ0)

T⌃�1(x� µ0)

+ const.
⌘

= �
⇣
wTx+ b

⌘
Collect terms

What did we learn?

• For this data, the log-likelihood ratio is linear!
– Line defines boundary to separate the classes
– Sigmoid turns distance from boundary to probability

48

Red: Y=0 Blue: Y=1

x2

x1

Logistic Regression

• What if we ignore Gaussian assumption on data?

Model:

• Farther from boundary wTx+b=0,
more certain about class

• Sigmoid converts distance to class probability

49

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)

Logistic Regression 50

p(y = 1|x) = �
⇣
wTx+ b

⌘
p(y = 1|x) = �(h(x,w))

=
1

1 + e�wTx -b

This unit is the main building block of Neural Networks!

Logistic Regression 51

• Computational Graph of function
– White node = input
– Red node = model parameter
– Blue node = intermediate operations

Slide credit: G. Louppe

This unit is the main building block of Neural Networks!

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Logistic Regression

• What if we ignore Gaussian assumption on data?

Model:

52

• With 𝑝! ≡ 𝑝(𝑦! = 𝑦|𝒙!)

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi(1� pi)

1�yi = pi if yi=1
1-pi if yi=0

• Goal:
– Given i.i.d. dataset of pairs (xi, yi)

find w and b that maximize likelihood of data

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)

Logistic Regression

• Negative log-likelihood

53

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Logistic Regression

• Negative log-likelihood

54

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Lo
ss

-log(pi)
-log(1-pi)

pi

Logistic Regression

• Negative log-likelihood

55

• No closed form solution to 𝑤∗ = argmin
#
− lnℒ(𝑤)

• How to solve for w?

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

How to Minimize Loss ℒ 𝜃 ? Gradient Descent

• Gradient Descent:

Make a step 𝜃 ← 𝜃 − 𝜂𝑣 in direction 𝑣 with step
size 𝜂 to reduce loss

• How does loss change in different directions?

Let 𝜆 be a perturbation along direction 𝑣

'
𝑑
𝑑𝜆
ℒ 𝜃 + 𝜆𝑣

!"#
= 𝑣 ⋅ ∇$ℒ 𝜃

• Then Steepest Descent direction is: 𝑣 = −∇$ℒ 𝜃

56

Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. current parameters: ∇$!ℒ 𝜃!

– Update parameters: 𝜃!%& ← 𝜃! − 𝜂∇$!ℒ 𝜃!

– h is the learning rate, controls how big of a step to take

57

𝜃!

𝜃"

Stochastic Gradient Descent
• Loss is composed of a sum over samples:

∇&ℒ 𝜃 =
1
𝑁
'
'(%

)

∇&ℒ 𝑦' , ℎ 𝑥'; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch)
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

58

Stochastic Gradient Descent
• Loss is composed of a sum over samples:

∇&ℒ 𝜃 =
1
𝑁
'
'(%

)

∇&ℒ 𝑦' , ℎ 𝑥'; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch)
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

• Several updates to SGD, like momentum, ADAM, RMSprop to
– Help to speed up optimization in flat regions of loss
– Have adaptive learning rate
– Learning rate adapted for each parameter
– …

59

Step Sizes

• Too small a learning rate, convergence very slow

• Too large a learning rate, algorithm diverges

60

𝜃

ℒ(𝜃)

Small Learning rate

𝜃

ℒ(𝜃)

Large Learning rate

Gradient Descent

• Logistic Regression Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum

61

Lo
ss

L(w)

Lmin(w)

Iterationsw

Logistic Regression Example 62

p(y=1 | x)
0 1

Image source

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Basis Functions

• What if non-linear relationship between y and x?

63

Basis Functions

• What if non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

ℎ(𝑥;𝑤) = 𝜎 𝑤#𝜙 𝑥

– Polynomial basis f(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

– Logistic regression on new features f(x)

64

Basis Functions

• What if non-linear relationship between y and x?

• Can choose basis functions f(x) to form new features

ℎ(𝑥;𝑤) = 𝜎 𝑤#𝜙 𝑥

– Polynomial basis f(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

– Logistic regression on new features f(x)

• What basis functions to choose? Overfit with too much flexibility?

65

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

66

http://scikit-learn.org/

http://scikit-learn.org/

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

67

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).

68

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).

• Complex models over-fit: will not deviate systematically
from data (low bias) but will be very sensitive to data
(high variance).

69

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

• Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).

• Complex models over-fit: will not deviate systematically
from data (low bias) but will be very sensitive to data
(high variance).
– As dataset size grows, can reduce variance! Can use more

complex model

70

Bias Variance Tradeoff 71

Regularization – Control Complexity

• L2 keeps weights small, L1 keeps weights sparse!

• But how to choose hyperparameter a?

72

L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/

Less regularization Less regularization

http://scikit-learn.org/

How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on

independent data and tune
hyper parameters

• Test set
– final evaluation of performance

after all hyper-parameters fixed
– Needed since we tune, or “peek”,

performance with validation set

73

Training set Validation set Test set

[Murray]

How to Measure Generalization Error? 74

Validation Sample

Summary

• Machine learning uses mathematical and statistical models
learned from data to characterize patterns and relations
between inputs, and use this for inference / prediction

• Machine learning comes in many forms, much of which
has probabilistic and statistical foundations and
interpretations (i.e. Statistical Machine Learning)

• Machine learning provides a powerful toolkit to analyze
data
– Linear methods can help greatly in understanding data

– Choosing a model for a given problem is difficult, keep in mind
the bias-variance tradeoff when building an ML mode

75

References

• http://scikit-learn.org/
• [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
• [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
• [Murray] Introduction to machine learning, Murray

– http://videolectures.net/bootcamp2010_murray_iml/

• [Ravikumar] What is Machine Learning, Ravikumar and Stone
– http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-
Intro.pdf

• [Parkes] CS181, Parkes and Rush, Harvard University
– http://cs181.fas.harvard.edu

• [Ng] CS229, Ng, Stanford University
– http://cs229.stanford.edu/

• [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
– https://indico.cern.ch/event/497368/

• [Fleuret] Francois Fleuret, EE559 Deep Learning, EPFL, 2018
– https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/

76

http://scikit-learn.org/
http://videolectures.net/bootcamp2010_murray_iml/
http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf
http://cs181.fas.harvard.edu/
http://cs229.stanford.edu/
https://indico.cern.ch/event/497368/
https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/

Backup

77

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

78

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

79

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

80

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

81

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

• More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable output y

82

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

• More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.
– As dataset size grows, can reduce variance! Can use more complex model

Multiclass Classification?
• What if there is more than two classes?

• Softmax→ multi-class generalization of logistic loss
– Have N classes {c1, …, cN}
– Model target yk = (0, …, 1, …0)

– Gradient descent for each of the weights wk

83

kth element in vector

p(ck|x) =
exp(wkx)P
j exp(wjx)

