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The Plan /

e J.ecture 1

— Introduction to Machine Learning fundamentals
— LLinear Models

* Lecture 2
— Neural Networks
— Deep Neural Networks
— Convolutional, Recurrent, and Graph Neural Networks

* Lecture 3
— Unsupervised Learning
— Autoencoders
— Generative Adversarial Networks and Normalizing Flows



Long History of Machine Learning

Rosenblatt 1958, 1960
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https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

Machine Learning in HEP
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+ More! Check out The Living Review of ML in HEP



https://iml-wg.github.io/HEPML-LivingReview/

What is Machine Learning?

G1ving computers the ability to learn without
explicitly programming them (arthur Samuel, 1959)

Statistics + Algorithms

Computer Science + Probability + Optimization
Techniques

Fitting data with complex functions
Mathematical models learnt from data that

characterize the patterns, regularities, and
relationships amongst variables in the system




Machine Learning: Models /

* Key element 1s a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

Classification

[Rogozhnikov]



Machine Learning: Models /

* Key element 1s a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

Regression




Machine Learning: Models /

* Key element 1s a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

Clustering
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Machine Learning: Models /

* Key element 1s a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

Dimensionality
Reduction

» X

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/



https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

Machine Learning: Models A

* Key element 1s a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

* Learning: estimate statistical model from data
— Supervised learning
— Unsupervised Learning
— Reinforcement Learning

* Prediction and Inference: using statistical model to
make predictions on new data points and infer
properties of system(s)



Learning /
r A Trai
. rain
Training
— | Model
Data r A
- g r Test
* Supervised Learning Test _ Data P
— Classification
— Regression
* Unsupervised Learning v
— Clustering - ~
— Dimensionality reduction Model
, , Evaluation
* Reinforcement learning - y,

[Ravikumar]



Notation A

¢ X € Rmxn Matrices in bold upper case:

¢ x € Rox1) Vectors in bold lower case

e x e R Scalars in lower case, non-bold
« X Sets are script

S Sequence of vectors x,, ..., X,

y € [0/ R Labels represented as

- Integer for classes, often {0,1}. E.g. {Higgs, Z}
- Real number. E.g electron energy

Variables = teatures = inputs
* Data pointx = {x,, ..., X,,} has n-features

Typically use affine coordinates:
y=wlx+w,— wlix
— W ={Wy, Wy, ..., W}
— X ={1, Xy, .., X,}

T



Probability Review A

 Joint distribution of two variables: p(x,y)

* Marginal distribution: p(x) = [p(x,y)dy

* Conditional distribution:  p(y|z) =

p(w\y)p(y)

* Bayes theorem: p(y|z) =
* Expected value: / f(x

e Normal distribution:

—x~N(u,0) — p(z) = QWJZGXP (




Supervised Learning /

* Given N examples with observable features {x; € X} and
prediction targets {y; € Y}, learn function mapping h(x)=y

Classification: Regression:
VY is a finite set of labels (i.e. classes) VYis a real number

denoted with integers




Unsupervised Learning %

Given some data D={x;}, but no labels, find structure in data

[Bishop]

Clustering: partition the data into (a)x. E # g
groups D={D, UD,UD,...UD} ¥ - | ¥

Dimensionality reduction: find a low
dimensional (less complex) representation
of the data with a mapping Z=h(X)

A\

Density estimation and sampling: o
. NI Y
estimate the PDF p(x), and/or learn to | & gowen, %
draw plausible new samples of x % { * X
p p t'\,_'“ yh*.‘ J "ji-
’w e “?;.nl
Image Credit - Link A



https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

Reinforcement Learning A

Agent
state (s[t]) Policy m: S—A
action (a[t])

reward (r[t+1])
—[ Environment ]% [Ravikumar]

* Models for agents that take actions depending on
current state

 Actions incur rewards, and attect tuture states

(“feedback”)

* Learn to make the best sequence ot decisions to
achieve a given goal when feedback 1s often delayed
until you reach the goal



Deep Reinforcement Learning with AlphaGo /
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Supervised Learning: How does 1t work? A




Supervised Learning: How does 1t work? A

> h(’_(; w) _ > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
* Design function with adjustable parameters
Y. Le Cun
* Design a Loss tunction
* Find best parameters which minimize loss t LW.X)

Ny




Supervised Learning: How does 1t work? A

> h(’_(; w) _ > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
* Design function with adjustable parameters
Y. Le Cun
* Design a Loss tunction
* Find best parameters which minimize loss t LW.X)

— Use a labeled training-set to compute loss
— Adjust parameters to reduce loss function /_K/
A

— Repeat until parameters stabilize




Reminder: Empirical Risk Minimization /

N
1
arg min — Z L(h(x:; W), y;) + AQ(w)
L =1 v J Y 1

Average expected loss Model regularization

* Framework to design learning algorithms

— L(-) 1s a loss function comparing prediction h(-) with target y

— (W) 1s a regularizer, penalizing certain values of w

* A controls how much penalty... a hyperparameter we have to tune

* Learning 1s cast as an optimization problem



Example Loss Functions A

* Square Error Loss: L(h(x;w),y) = (h(XS W) — y)2

— Often used 1n regression

— With y € {0,1} — (1 —y)log(l — h(x;w))

— Often used 1n classification

* Cross entropy: L(h(x;w),y) = — ylog h(x; w)

* Hinge Loss:
— Withy e {-1,1}
L(h(x;w),y) = max(0,1 — yh(x; w))

- Square Error
- Cross Entropy
- Hinge

- Zero-one

e Zero-One loss

— With h(x; w) predicting label x\

L(h(X7 W)7 y) — 1y;éh(x;w)

[Bishop]




Least Squares Linear Regression

S




Least Squares Linear Regression A

* Set of input / output pairs D = {x;, y;}

1=1...n

- Xi - Rm

- y1 - R 1000
e Assume a linear model g

h(x; w) = w'x
* Squared Loss function: £ o
1 Z 2
i

* Find w" = arg min,, L(w)



Least Squares Linear Regression: Matrix Form A

* Set of input / output pairs D = {x;, y;}

1=1...n
— Design matrix X € Rmm
— Target vector y € R
T @y < Dim U1
21 X22 - Tom Y2
A = y =




Least Squares Linear Regression: Matrix Form A

* Set of input / output pairs D = {x;, y;}

1=1...n
— Design matrix X € Rmm
— Target vector y € R
° 1 . 1
Rewrite loss: L(w) = 5(}, —Xw)T(y — Xw)
* Minimize w.r.t. w: w* = (X'X)" X'y = argmin L(w)

wW



Linear Regression — Probabilistic Interpretation /

* Assume y;, = mx; + ¢

1 e2
* Random error: e; ~ N(0,0) — p(e;) o< exp (5 6_22)
O

— Nolisy measurements, unmeasured variables, ...



Linear Regression — Probabilistic Interpretation A

* Assume y;, = mx; + ¢

1 e2
* Random error: e; ~ N(0,0) — p(e;) o< exp (5 %)
O

— Nolisy measurements, unmeasured variables, ...

_ )2
e Then Yi NN(mxi,a) — p(y;|zi;m) x exp (l(yz m;) )

2 o2




Linear Regression — Probabilistic Interpretation A

* Assume y;, = mx; + ¢

1 e2
* Random error: e; ~ N(0,0) — p(e;) o< exp (5 %)
O

— Nolisy measurements, unmeasured variables, ...

1 (yi — mﬂ?z‘)z)

e Then Yi ~ N(mmi,a) — p(yilﬂfz‘;m) X €eXp (—

2 o2
e Likelihood function:

L(m) = p(y|X;m) Hp yilwi;m

— —log L(m) ~ Z(yz — ma;)’

1



Linear Regression — Probabilistic Interpretation A

* Assume y;, = mx; + ¢

1 e2
* Random error: e; ~ N(0,0) — p(e;) o< exp (5 %)
O

— Nolisy measurements, unmeasured variables, ...

1 (yi — mﬂ?z‘)z)

e Then Yi ~ N(mmi,a) — p(yilﬂfz‘;m) X €eXp (—

2 o2
e Likelihood function:

L(m) = p(y|X;m) Hp yilwi;m

Squared

sy logL(m) N Z(yl B ma:i)Q .~ |loss function!

1




Linear Regression Example /

= 50—————————F— 77— 77— —  Eur. Phys. J. C(2015) 75:17
) ~ ATLAS Simulation ]
(2. 45:_—0— 20< ptTrmh<25 GeV \s=7TeV —:
- - —=—25<p"<30GeV Pythia Dijet, anti-k R=0.4 7
8 40 —+—30<p™"<35GeV [/ <21,75<u <85
o - —%— 35< ptTrlJth <40 GeV N
35 o 40<p"" < 45 GeV —
- Average Slope = 0.288%0.003 GeV/N,, 7
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F o—e—o—o— " ° .
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2 4 6 8 10

Number of primary vertices (NPV)

* Reconstructed Jet energy vs. Number of primary vertices



Linear Classification

.




Classification

Rectangular cuts Linear discriminant

* Learn a function to separate o e
different classes of data

* Avoid over-fitting: /

— Learning too fined details about
your training sample that will
not generalize to unseen data X




Linear Decision Boundaries A

* Separate two classes: b0 aof
— X € Rm h(x) <0
_ Yi < {_191}

e Linear discriminant model
h(x; w) = wlx+b

* Decision boundary defined by hyperplane (Bishop]

h(x; w) = wlx+b =0

* Class predictions: Predict class 0 if h(x;; w) < 0, else class 1



Linear Classifier with Least Squares? A

[Bishop]

* Why not use least squares loss with binary targets?



Linear Classifier with Least Squares?

* Why not use least squares loss with binary targets?
— Penalized even when predict class correctly
— Least squares 1s very sensitive to outliers

[Bishop]



Linear Discriminant Analysis /

* Goal: Separate data from two classes / populations




Linear Discriminant Analysis A

* Goal: Separate data from two classes / populations

* Data from joint distribution (x, y) ~ p(X, Y)
— Features: x e R™

— Labels: y € {0,1}




Linear Discriminant Analysis A

* Goal: Separate data from two classes / populations

* Data from joint distribution (x, y) ~ p(X, Y)
— Features: x e R™

— Labels: y € {0,1}

* Breakdown the joint distribution:

p(x,y) =px|[y)p(y)

N\

Likelihood: Prior:
Distribution of features Probability of each class
for a given class



Linear Discriminant Analysis A

* Goal: Separate data from two classes / populations

* Data from joint distribution (x, y) ~ p(X, Y)
— Features: x e R™

— Labels: y € {0,1}

* Breakdown the joint distribution:

p(x,y) =px|[y)p(y)

Assume likelihoods are Gaussian

1 1 N\Teo1
e ol Hen )

p(xly) =




Predicting the Class /

* Separating classes = Predict the class of a point x

p(y = 1]x)

* Want to build a classifier to predict
the label y given and 1nput x



Predicting the Class A

* Separating classes = Predict the class of a point x

p(X|y — 1)p(y — 1) Bayes Rule
p(x)

ply = 1]x) =



Predicting the Class /

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|ly =0)p(y =0) + p(x|ly = 1)p(y = 1) definition



Predicting the Class A

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|ly =0)p(y =0) + p(x|ly = 1)p(y = 1) definition

1

P (<ly=0)p(5=0)
T pxly=Dp(y=1)

1

(x|y=0)p(y=0 Why?
1+ exp ( log Bf=gii=y) )




Logistic Sigmoid Function
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Predicting Classes with Gaussian Likelihoods A

(x|y =1) ply =1)
(xly=0) T & p(y = o>)

/ \

Log-likelihood ratio Constant w.r.t. x

P
ply = 1|x) = 0(logp



Predicting Classes with Gaussian Likelihoods /

p(y = 1))
p(y = 0)

ol = 1) = o 10 2 =)

— + log
p(xly = 0)

e For our Gaussian data:

= a(logp(x\y =1) —logp(x|ly =0) + const.)

= o~ e )" S o ) + 3 (x — o) S (x — o)

+ const.)

T
= O(W X + b) Collect terms



What did we learn? A

* For this data, the log-likelihood ratio 1s linear!

— Line defines boundary to separate the classes

— Sigmoid turns distance from boundary to probability




Logistic Regression A

* What if we ignore Gaussian assumption on data?

Model:  p(y =1|x) = O'(WTX + b) = h(x; W)

* Farther from boundary w'x+b=0,
more certain about class

* Sigmoid converts distance to class probability



Logistic Regression A
= 1|x) = O'(WTX + b)

1 +e-wixb

This unit 1s the main building block of Neural Networks!




Logistic Regression

.

* Computational Graph ot function
— White node = input

— Red node = model parameter
— Blue node = intermediate operations
ClOJE add

Slide credit: G. Louppe

This unit 1s the main building block of Neural Networks!



https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Logistic Regression A

* What if we ignore Gaussian assumption on data?

Model:  p(y =1|x) = O'(WTX + b) = h(x; W)

* With p; = p(y; = ylx;)

: . s i y=
P(y; = yle:) = Bernoulli(py) = (po)?* (1 — po)* % =7 %27}

e Goal:

— G1ven 1.1.d. dataset of pairs (x;, y;)
find w and b that maximize likelihood ot data



Logistic Regression

.

* Negative log-likelihood

—InL=—In][@) 1 -p)¥

7



Logistic Regression

S

* Negative log-likelihood

—InL

- H(pi)yi (1—pi)' ¥

— Zyz In(p;) + (1 —y;) In(1 — p;)

-log(pi)
-log(1-p;)

|

binary cross entropy loss function!

-



Logistic Regression

* Negative log-likelihood

~InL=—In]]@)Q-p) ¥

= — Zyz In(p;) + (1 —y;) In(1 — p;)

binary cross entropy loss function!

-

=Y Tyl +e™ X) + (1 —y,)In(1 + eV ¥)

* No closed form solution to w* = arg min — In L(w)
w

e How to solve for w?



How to Minimize Loss £(0)? Gradient Descent A

e Gradient Descent:

Make a step 8 « 8 — nv in direction v with step
size 1 to reduce loss

* How does loss change 1n different directions?

Let A be a perturbation along direction v

d
— L0+ )| =v-VuL(0)
dx L

* Then Steepest Descent direction is: v = =V L(0)



Gradient Descent %

* Minimize loss by repeated gradient steps

— Compute gradient w.r.t. current parameters: Vy L(6;)
— Update parameters:  6;,4 < 6; —nVg.L(6;)

— N 1s the learning rate, controls how big of a step to take

0,




Stochastic Gradient Descent A

o Loss is composed of a sum over samples:
N
1
VoL(0) =+ > VoL(yi h(xi;0))
=1

— Computing gradient grows linearly with NI

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

= E=

Batch gradient descent Stochastic gradient descent



Stochastic Gradient Descent

A

Loss 1s composed of a sum over samples:
N
1
VoL(0) =+ > VoL(yi h(xi;0))
=1

— Computing gradient grows linearly with NI

(Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

Several updates to SGD, like momentum, ADAM, RMSprop to

— Help to speed up optimization in flat regions of loss
— Have adaptive learning rate
— Learning rate adapted for each parameter



Step Sizes A

* Too small a learning rate, convergence very slow

* Too large a learning rate, algorithm diverges

Small Learning rate Large Learning rate
£(6) _

3 \

-/-V

L(0)




Gradient Descent A

Starting

L(W)A / Point

Iteration 3

Loss

Iteration 4

Convergence

(w)

min

T — s > 0 200 400 600 800 1000

w lterations

o Logistic Regression Loss 1s convex

— Single global minimum

e Jterations lower loss and move toward minimum



Logistic Regression Example

62

25
o
20F
(s}
15 |
10
o ==
® PRI Tue decision boundary
=== Fitted decision boundary
° @89 Outcome 1
o8¢ Outcome 0
-1 0 1 2 3 4 5

== Fitted decision boundary
00@ Predicted probability

I

3 - 5 6

Image source


https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Basis Functions

N =100 1

0 1

* What if non-linear relationship between y and x?



Basis Functions

N =100 1

0 1

* What if non-linear relationship between y and x?

* Can choose basis functions ¢(x) to form new features

h(w) = a(wTp(x))

— Polynomial basis ¢(x) ~ {1, x, x%, x% ...},
Gaussian basis, ...

— Logistic regression on new features ¢(x)



Basis Functions

N =100 1

0 1

* What if non-linear relationship between y and x?

* Can choose basis functions ¢(x) to form new features

h(w) = a(wTp(x))

— Polynomial basis ¢(x) ~ {1, x, x%, x% ...},
Gaussian basis, ...

— Logistic regression on new features (x)

* What basis functions to choose? Overfit with too much flexibility?



What is Overfitting A

Degree 1 Degree 4 Degree 15

—  Model —  Model —  Model
True function True function True function
w eees Samples ee e Samples ee e Samples

Underfitting Overfitting

http://scikit-learn.org/

* What models allow us to do 1s generalize from data

* Different models generalize in difterent ways


http://scikit-learn.org/

Bias Variance Tradeoff /

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)



Bias Variance Tradeoff A

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

* Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).



Bias Variance Tradeoff A

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

* Simple models under-fit: will deviate from data (high

bias) but will not be influenced by peculiarities of data
(low variance).

* Complex models over-fit: will not deviate systematically

from data (low bias) but will be very sensitive to data
(high variance).



Bias Variance Tradeoft A

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

* Simple models under-fit: will deviate from data (high

bias) but will not be influenced by peculiarities of data
(low variance).

* Complex models over-fit: will not deviate systematically

from data (low bias) but will be very sensitive to data
(high variance).

— As dataset size grows, can reduce variance! Can use more
complex model



Bias Variance Tradeoft

.

Optimum Model Complexity

Error

Total Error

Variance

Model Complexity



Regularization — Control Complexity

.

weights

L(w) = 3y — Xw)’ + af(w)

L2: Q(w) = |lwl|” L1: Q(w) = [|w]]

Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths
25 +
200 1 20 |
15+
100 | /
/ £ 10f
c
o
P 2
@  S5r
0 = 8
—— s
-5t
-100 |
—10} — tasso i o et T |
— - Elastic-Net
1072 1073 10 107 106 107 108 107 1010 -1.5 -1.0 -0.5 0.0 0.5
o alpha o -Log(alpha)
Less regularization > Less regularization >

* L2 keeps weights small, L1 keeps weights sparsel!

* But how to choose hyperparameter o.? g
http://scikit-learn.org/



http://scikit-learn.org/

How to Measure Generalization Error? /

Training set Validation set Test set

Split dataset into multiple parts

Training set
— Used to tit model parameters

y, output

Validation set

— Used to check performance on X, input
independent data and tune
hyper parameters

10 . ;

—e— validation
——— {rain

Test set

— final evaluation of performance
after all hyper-parameters fixed

— Needed since we tune, or “peek”, 0 y

performance with validation set 0 5 10 15
p, polynomial order

Mean square error
(&)
|
|

[Murray]



How to Measure Generalization Error?

/.

Prediction Error

High Bias Low Bias
Low Variance High Variance
= = memm e e i -

Validation Sample

/

i

Training Sample

gl High
Model Complexity



\ Summary %

* Machine learning uses mathematical and statistical models
learned from data to characterize patterns and relations
between inputs, and use this for inference / prediction

* Machine learning comes 1n many forms, much of which
has probabilistic and statistical foundations and
Interpretations (1.e. Statistical Machine Learning)

* Machine learning provides a powertul toolkit to analyze
data

— Linear methods can help greatly in understanding data

— Choosing a model for a given problem 1s difficult, keep in mind
the bias-variance tradeoft when building an ML mode
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Bias Variance Tradeoff A

* Model h(x), defined over dataset, modeling random variable output y

Elyl =y
E[h(z)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

El(y — h(=))"] = E[(y — )]

= noise

(5= h(x)*  + El(h(z) - h(z))’]

(bias) + wvariance
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Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise
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* Model h(x), defined over dataset, modeling random variable output y
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* Examining generalization error at x, w.r.t. possible training datasets
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* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.
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* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.



Bias Variance Tradeoft A

* Model h(x), defined over dataset, modeling random variable output y

Elyl =y
E[h(z)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + El(h(z) - h(=))"]
)2

= noise + | (bias

-+ |variance

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

— As dataset size grows, can reduce variance! Can use more complex model



Multiclass Classification? A

e What it there 1s more than two classes?

5000,

o

@ Wearingin
A Working smoothly
B Need replacement

|
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Time in service (in days)

* Softmax — multi-class generalization of logistic loss
— Have N classes {cy, ..., ¢y}

— Model target Yk — (O’ Tt 1<’O\> kth element in vector

exp(Wgx)
D exp(w;z)

— Gradient descent for each of the weights w,

p(cklr) =



