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Basic Definitions

1. Probability Function

A function f (x) that gives a rule for assigning a probability P(x) to
outcome x is called a probability function.

So far, we have talked about outcomes that can be modeled with n-tuples,
(z1, · · · , zn), whose elements are drawn from the set of natural numbers
N = {0, 1, · · · ,ℵ0}. But outcomes can also be modeled using n-tuples
with elements drawn from the set of real numbers R = (−c , c)a.

aGeorg Cantor (1845 - 1918), inventor of set theory, proved the astonishing
theorem c = 2ℵ0 , that the cardinalities c and ℵ0 of sets R and N, respectively,
are related in this amazing way. We typically use the symbol ∞ instead of c.
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Basic Definitions

2. Probability Mass Function

If x is from N, then the probability function f (x) is called a probability
mass function (pmf). But we physicists hardly ever use this jargon.
Notice that f (x) is a probability.

3. Probability Density Function

If x is from R, then the probability function f (x) is called a probability
density function (pdf) and is often written with a lower case letter, e.g., p.
Notice that f (x) is not a probability.

To get a probability, we must integrate the pdf over an interval whose size
is at least as large as an infinitesimal dxa. More usefully, we compute

P =

∫ x2

x1

f (X ) dX .

aAn infinitely small non-zero number!
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Basic Definitions

Random Variables

Formal books on statistics distinguish between a random variable X ,
denoted with an upper case letter, and its outcomes x , denoted by lower
case letters.

However, most physicists typically do not make this distinction
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Basic Definitions

More Definitions

Several standard numbers are used to characterize a probability
distribution. Here are a few.

4. Moments

The r th moment µr (a) about a of a probability distribution with
probability function f (x) is defined bya

µr (a) =

∫
Sx

(x − a)r f (x) dx ,

where Sx is the domainb of f (x).

µ = µ1(0) is called the mean and is a measure of the location of the
function f (x); V(x) = µ2(µ) is called the variance and σ =

√
V is the

standard deviation, which is one measure of the width of f (x).

aFor discrete distributions, we replace the integral by a sum.
bThe domain of a function is the set of its “input” values. The range is the

set of its “outputs”.
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Basic Definitions

Yet More Definitions

5. Quantile Function

The function

D(x) =

∫
X≤x

f (X ) dX

is called the cumulative distribution function (cdf) of f (x). (Here
distinguishing between X and x turns out to be helpful!) The function
x = Q(P) that returns x given P = D(x) is called the quantile function
and x is called the P-quantile of f (x).

Sometimes it is convenient to distinguish between the left cdf
DL(x) ≡ D(x) and the right cdf defined by

DR(x) =

∫
X≥x

f (X ) dX .
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Basic Definitions

And More Definitions ...!

6. Covariance, Correlation, Independence

The covariance of random variables x and y with probability function
f (x , y) is defined by

Cov(x , y) =

∫
Sx

∫
Sy

(x − µx) (y − µy ) f (x , y) dx dy .

It is a measure of the correlation between the variables x and y .

If the probability function f (x , y) can be written as f (x , y) = f (x) f (y)
then variables x and y are said to be independent in which case
Cov(x , y) = 0.

However, in general, Cov(x , y) = 0 does not imply independence.
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Discrete Distributions Binomial

Example (2.1 The Binomial and the LHC)

Consider m proton-proton collisions at the LHC and suppose we have r
successes, say the creation of a Higgs boson. However, we are able to
record only n < m collision events of which k ≤ n are successes.

Problem What is the probability P(k, n|r ,m) to get k successes and n− k
failures in n trials given that they are drawn at random from a “box”
called the LHC containing r unknown successful collisions and m − r
unknown failures?

Assumptions

1 The order of proton-proton collisions is irrelevant.

2 Every sample of collisions of size n is equally probable.

Harrison B. Prosper (FSU) Probability 16 May, 2022 11 / 37



Discrete Distributions Binomial

This problem is exactly the same as
drawing k red balls and n − k blue
balls from an urn with r red balls and
m − r blue balls.

And, like the LHC, the drawing of
red and blue balls, that is, Higgs
boson and non-Higgs boson events,
is done without replacement.
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Discrete Distributions Binomial

Example (2.1 The Binomial and the LHC)

Solution Plan:

1 Determine the number of ways T to get n collisions from m collisions
regardless of whether a collision is a success or a failure.

2 Determine the number of ways S to get exactly k successful collisions
from r successful collisions.

3 Determine the number of ways F to get exactly n − k failed collisions
from m − r failed collisions.

4 Since successes and failures are assumed to be independent, the
number of samples of size n with k successes and n − k failures is
N = S × F .

5 Therefore, P(k , n|r ,m) = S × F/T .
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Discrete Distributions Binomial

1 How many samples T of n collisions can be drawn from m collisions?(
m

n

)

2 How many samples S of k successes can be drawn from r successes?(
r

k

)

3 How many samples F of n − k failures can be drawn from m − r
failures? (

m − r

n − k

)
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Discrete Distributions Binomial

P(k , n|r ,m) =

(
r

k

)(
m − r

n − k

)
/

(
m

n

)

This probability can be rewritten as

P(k , n|r ,m) =

(
n

k

)
f (k , n, r ,m),

where f (k , n, r ,m) =
r !

(r − k)!

(m − r)!

(m − r − n + k)!
/

m!

(m − n)!
.
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Discrete Distributions Binomial

We now ask what is the probability of k, n irrespective of r ,m?

This requires that we consider all values of r and m that are possible a
priori and sum the probability P(k, n|r ,m) weighted by the probability
P(r ,m) of r and m.

That is, we need to compute the sum

P(k , n) =
∑
r ,m

P(k , n|r ,m)P(r ,m).

The elimination of quantities like r and m that are not of current interest
is an example of a common procedure in probability theory called
marginalization.

We can already see a potential problem. It is far from clear what we should
put for P(r ,m). But let’s nevertheless continue and see where this leads.
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Discrete Distributions Binomial

P(k , n) =
∑
r ,m

P(k , n|r ,m)P(r ,m).

Let’s rewrite the expression above in terms of the unknown relative
frequency of success, z = r/m:

P(k , n) =
∑
z,m

P(k , n|zm,m)P(zm,m),

=

(
n

k

)∑
z,m

f (k, n, z ,m)P(zm,m).

At the LHC, m, the number of proton-proton collisions, is huge.

Therefore, let’s consider the idealization m→∞ while keeping k and n
fixed. It’s as if we’ve used up our disk space quota at CERN even as the
LHC continues to run!
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Discrete Distributions Binomial

P(k , n) =

(
n

k

)∑
z,m

f (k, n, z ,m)P(zm,m),

Exercise 2.1

show that f (k , n, z ,m)→ zk(1− z)n−k as m→∞.
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Discrete Distributions Binomial

What about the probabilities P(zm,m)?

To see what happens, write P(k , n) as

P(k , n)→
∑
z

∑
m

(
n

k

)
zk(1− z)n−k P(zm,m) with z = r/m,

=
∑
z

(
n

k

)
zk(1− z)n−k

∑
m

P(zm,m),

Harrison B. Prosper (FSU) Probability 16 May, 2022 19 / 37



Discrete Distributions Binomial

P(k , n) =
∑
z

(
n

k

)
zk(1− z)n−k

∑
m

P(zm,m),

As m→∞, the sum converges to an integral and we obtain:

Bruno de Finetti’s Representation Theorem

P(k , n) =

∫ 1

0
binomial(k , n, z)π(z) dz , where

binomial(k , n, z) =

(
n

k

)
zk(1− z)n−k and

π(z) = lim
m→∞

∑
m

P(zm,m).

π(z) is an example of a prior density.
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Discrete Distributions Binomial

The Binomial Distribution

What are we to make of the prior
density π(z)?

We ask our friendly theorist for a
prediction of the relative
frequency of Higgs boson
production at the LHC. She
predicts that it is p.

We might consider modeling that
prediction by setting
π(z) = δ(z − p) in de Finetti’s
theorem. If we do so, we obtain
the binomial distribution

P(k, n) = binomial(k, n, p)
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Discrete Distributions Poisson

The Poisson Distribution
There are many situations in which the count n in the binomial distribution

binomial(k, n, p) =

(
n

k

)
pk(1− p)n−k ,

is large and the probability p is small. For example, at 13 TeV only one in
1010 proton-proton collisions leads to a Higgs boson event. Consider,
therefore, the limit n→∞ and p → 0 while a = pn and k remain fixed.

Exercise 2.2

Show that in this limit the binomial distribution becomes the Poisson
distribution, Poisson(k , a) = ak exp(−a)/k!
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Discrete Distributions Poisson

The Poisson Distribution

The more fundamental definition of a Poisson distribution is via a
stochastic model.

Suppose that at time t + dt we have recorded k counts and that in the
time interval (t, t + dt) only two things can happen:

no event occurred during (t, t + dt) or

one event occurred during (t, t + dt).

We further suppose that the probability to get an event during the time
interval (t, t + dt) is proportional to its size dt.

We can now assign probabilities.
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Discrete Distributions Poisson

The Poisson Distribution

Here are the transition probabilities that define the Poisson model:

Pk(t + dt) = probability that the count is k at time t + dt

Pk(t) = probability that the count is k at time t

Pk−1(t) = probability that the count is k − 1 at time t

qdt = probability to record 1 event during t + dt

1− qdt = probability to record 0 events during t + dt

In principle, q could depend on time.
Using the probability rules, we can write

Pk(t + dt) = (1− qdt)Pk(t) + qdt Pk−1(t),

or noting that dPk(t)/dt = [Pk(t + dt)− Pk(t)]/dt,

dPk

dt
= −q Pk + q Pk−1.

Harrison B. Prosper (FSU) Probability 16 May, 2022 24 / 37



Discrete Distributions Poisson

The Poisson Distribution
Equations such as

dPk

dt
= −q Pk + q Pk−1,

can be solved recursively.

Exercise 2.3

Show that

Pk(t) = Poisson(k, a) =
e−aak

k!
,

where the mean count is a = qt. Also, show that Vark = a, an important
fact about the Poisson distribution that justifies the statement that for a
mean count a we would expect counts k to fluctuate by roughly ±

√
a.
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Discrete Distributions Multinomial

A widely used model in particle physics, astronomy, and cosmology is the
multi-Poisson model defined by

P(k|a) =
M∏

m=1

akmm e−am

km!
.

This is the standard statistical model for binned data when the counts are
conditionally independent.

In particle physics, analyses that use this model are sometimes referred to
as shape analyses.
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Discrete Distributions Multinomial

Exercise 2.4

Show that

P(k|a) = multinomial(k1, · · · , km, p1, · · · , pm)Poisson(k , a), where

k =
M∑

m=1

km, a =
M∑

m=1

am, pm =
am
a
,

M∑
m=1

pm = 1,

and the multinomial distribution is given by

multinomial(k1, · · · , km, p1, · · · , pm) ≡
(

k

k1, · · · , km

) M∏
m=1

pkmm

When bin counts are large, or when they have a large dynamic range,
typical of steeply falling spectra, it is sometimes convenient to drop the
Poisson term and rely solely on the multinomial.
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Continuous Distributions Gaussian

Gaussian Distribution
The probability density function of the Gaussian distribution is

Gauss(x , µ, σ) =
e−

1
2

(x−µ)2/σ2

σ
√

2π
.

It has mean µ and variance σ2. The other oft-used properties are the
probability contents of various intervals. Let z = (x − µ)/σ. Then

P(z ∈ [−1.00, 1.00]) = 0.683

P(z ∈ [−1.64, 1.64]) = 0.900

P(z ∈ [−1.96, 1.96]) = 0.950

P(z ∈ [−2.58, 2.58]) = 0.990

P(z ∈ [−3.29, 3.29]) = 0.999

P(z ∈ [5.00,∞)) = 2.7× 10−7

The Gaussian, or normal, distribution is the most important distribution in
statistics.
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Continuous Distributions Gaussian

Gaussian Distribution
A bumper sticker: All sensible probability distributions approach a
Gaussian in some limit. The precise statement is the central limit theorem.

Example (2.2 The Central Limit Theorem)

Consider the average t = 1
n

∑n
i=1 xi , where xi ∼ p(µ, σ) and p(µ, σ) is any

probability density with finite mean µ and standard deviation σ.

Define the standardized variable z =
√
n(t − µ)/σ. The mean of the

probability density of z , p(z), is 0 and its standard deviation is 1. The
central limit theorem states

lim
n→∞

p(z < x) =

∫ x

−∞
Gauss(X , 0, 1) dX .

When measurement errors can be modeled as the sum of a large number
of random contributions, we expect, and this is borne out in practice, the
probability density of these errors to be roughly Gaussian.
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Continuous Distributions χ2

χ2 Distribution
Write z = (x − µ)/σ, where x ∼ Gaussian(µ, σ) (∼ means “is sampled
from”) and consider the sum

t =
n∑

i=1

z2
i .

What is the probability density function (pdf) of t? For any well-behaved
probability density function, p(z1, · · · , zn), the pdf of t, p(t), is given by
the random variable theorem1

p(t) =

∫
dz1 · · ·

∫
dzn δ (t − g(z1, · · · , zn)) p(z1, · · · , zn) ,

where g(z1, · · · , zn) is the function, such as the sum above, that maps z1

to zn to t. The δ-function imposes the constraint t = g(z1, · · · , zn).

1A theorem for physicists in the theory of random variables, D. Gillespie, Am. J. of
Phys. 51, 520 (1983).
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Continuous Distributions χ2

χ2 Distribution

First note that p(z1, · · · , zn) = p(z1)p(z2) · · · p(zn) and

δ(x) =
1

2π

∫ ∞
−∞

e iωx dω.

(Burn this formula into your brain...it’s one of the most useful in physics
and statistics!) Putting together the pieces and shuffling the order of
integration, we get

p(t) =
1

2π

∫ ∞
−∞

dω e iωt
n∏

j=1

∫ ∞
−∞

e−iωz
2
j p(zj) dzj ,

=
1

2π

∫ ∞
−∞

dω
e iωt

(2i)n/2

1

(ω − i/2)n/2
.
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Continuous Distributions χ2

χ2 Distribution

Writing m = n/2, and performing the integral for integer m, we find

1

2πi

∫ ∞
−∞

dω
ie iωt

(2i)m
1

(ω − i/2)m
=

1

Γ(m)

tm−1 e−t/2

2m
.

This result remains valid for non-integral values of m. Therefore, the pdf
of the sum of the square of n standardized Gaussian variates is (t = χ2)

p(t) =
1

Γ(n/2)

tn/2−1 e−t/2

2n/2
, mean n, variance 2n .
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Continuous Distributions Cauchy

Cauchy Distribution
Let x , y ∼ Gaussian(0, 1) ≡ g(x). What is the pdf of t = y/x?

It is given by

p(t) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy δ(t − y/x) g(x) g(y),

=
1

2π

∫ ∞
−∞

dx

∫ ∞
−∞

dy δ(t − y/x) e−
1
2

(x2+y2).

This integral is begging us to use polar coordinates, y = r sin θ, x = r cos θ
and dx dy → r dr dθ, so that we can write

p(t) =
1

π

(∫ ∞
0

e−
1
2
r2
r dr/2

)∫ 2π

0
δ(t − tan θ) dθ,

=
1

π

∫ 2π

0
δ(t − tan θ) dθ.
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Continuous Distributions Cauchy

At first glance, the odd looking beast

p(t) =
1

π

∫ 2π

0
δ(t − tan θ) dθ,

looks tricky! But, recall that δ(h(θ)) = δ(θ − θ0)/|dh/dθ|, where θ0 is the
root of h(θ).

For this problem, h(θ) = t − tan θ = 0 and 1/|dh/dθ| = cos2 θ. Therefore,

p(t) =
1

π

∫ 2π

0
δ(θ − θ0) cos2 θ dθ,

=
1

π
cos2 θ0.

But, tan θ = t =⇒ cos θ = 1/
√

1 + t2. Therefore,

p(t) =
1

π(1 + t2)
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Summary

Summary

According to Kolmogorov, probabilities are functions defined on
suitable sets, have range [0, 1], and follow simple rules.

The two most common interpretations are: relative frequency and
degree of belief.

If it is possible to decompose experimental outcomes (basically, a set
of n-tuples) into outcomes considered equally likely, then the
probability of an outcome may be taken to be the ratio of the number
of favorable outcomes to that of all possible outcomes.

More generally, we use probability functions; probability mass
functions for discrete distributions and probability densities for
continuous ones.

And no, the probability distributions we use do not come from
Nature! We create them through mathematical reasoning. Our hope,
however, is that the distributions we create are adequate models of
the data generation mechanisms.
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