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4 Classical goodness-of-fit tests

4.1 The binned data regime

Binned data may originate from the fact that the resolution of the detector is not sufficiently
high to produce a continuous stream of data. Alternatively, researchers may decide to artificially .
bin the data. This can be done, for instance, for the sake of simplifying the estimation process or
introducing Poisson uncertainties.

Suppose that our search region X is the energy interval 1 — 50GeV and it has been divided into

i=1,...;n bins. Denote with x; the value of the energy at the center of bin i. Moreover, let Y;
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In the first case, the total number of events observed N, is treated as fixed, and p(x;, ) is the

be the number of events in bin 7. We typically assume that

Y; ~ Multinomial[N,p(z;,0)]  or  Y; ~ Poisson[m(z;, )]

probability to observe an event in bin i, whereas, the expected number of events in bin 7 is
m(x;,0) =Np(z;,8). In the second case, the total number of events observed is itself random
and m(z;, @) is tells us how many event we expect to observe in bin i. Finally, @ is a set of p
(po’éentially ﬁnknown) parameters characterizing the shape of our mean function m(z;,8). Our
goal is to assess if the our model m(x;, @) for the number of expected events in each of the bins
is valid. Notice that, if 8 is unknown, we may proceed by estimating it via maximum likelihood
(see Section 3.1). In this setting, however, we must consider the binned data likelihood, i.e.,

| b Yi
L(8;y) = ———-u«nN' ‘ H [p(xi, 9)] for Y; ~Multinomial.
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L(6;y) = H T eXp{‘m(:l:i, 9)} for Y; ~Poisson,
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4.1.1 | Pearson X? test l

» Specification of the null hypothesis.

Hy : E[Y;] = m(z;, 0) (versus Hj : E[Y;] # m(z;,0))
foralli=1,...,n.

o Specification of the test statistic.
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o Derivation of the distribution of the test statistic under Hy.

— If , 8 known:
I m(z;,0) >Tforalli=1,... n, as N — co, under Hy,
. 1900
— If , 0 unknown:
Em(z;,0) >7foralli=1,...,n, as N = 0o, under Hy,

Tiewe

o Computation of the p-value.
Let X2, be the value of the test statistic X2 evaluated on the data,

— If , 0 known: p-value=P(x2_, > X2 )

obs

— If , 8 unknown: p—value:P(x?hp_l > X2 )

o What do we do after we have computed our p-value?

We check if it is larger or smaller than o.

Warning: If the number of events in the bins is small, X2 may lead to biased (non-admissible)
tests. That is true even if the x? approximation hold!

4.1.2 G? test (also known as deviance test or likelihood ratio)

¢ Specification of the null hypothesis: same as Pearson X 2 \F y‘ ~ MJHMOUM ?
o Specification of the test statistic. G 2’: 2 Z:‘ [Yl | _X‘_ ]
1= WA {X‘.I' 8)

€ VivPoison =2 ; {Y; log E(:%—éﬁ - (Y- m(wi,e))}

o Derivation of the distribution of the test statistic under Hy: same as Pearson X?2.

« Computation of the p-value: same as Pearson X2.

‘Which one should be used?
In general, the x? approximation is typically better for Pearson than it is for G2, especially in the

Poisson case. The x? approximation may be better for G? if the counts are small. The literature
on this is vast but a self-contained review can be found in

Cressie and Read, 1989. Pearson’s X2 and the Loglikelihood Ratio Statistic G%: A
Comparative Review. International Statistical Review. https://www.jstor.org/
stable/14035827seq=1#metadata_info_tab_contents
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4.2 The unbinned data regime
4.2.1 The univariate case

Let X be continuous random variable taking values over the real line.and distributed according
to the distribution function F(z) = P(X <z)ie, X ~F. When F is unknown, we are typically

AT e

interested in testing if, for a given dlstnbutlon function G
Hy:F=G versus  Hi:F#G (3)

To perform this test, given a sample of N i.i.d. raqdoni variables from F', it is sensible to work
with the process —

N
ve(z) = VN [@v(x}‘ — G(2)] (4)

where F N(:c) is the so-called empzrzcal dzstrzbutwn functzon it provides an estimate of F(m) and

e T S T T

it is deﬁned as

N
1:N(>ﬂ= f-\l"fz:\ A/(.(w:{x'i

The stochastic processg),g(x) is called ernpirical process. Let’s focus for a moment on understanding

our vg(x)...

o As N — oo, we have that FN(a:) — F(z).
So, what do you think will happen to vg(:z:) when N — oo (under Hy and Hy, respectively)?

— Under Hy: VG/X) —_r O V $%
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When dealing with univariate distributions, we typically consider the so-called Probability
Integral Transform (PIT), that is, we set T = G(X).

o What is the distribution of T = G(X) under Hy?

T ~ Uuiporwk [@, 1—1 for __Q_E‘_L G

cdf of T ?CT$}<>:k

When applying such transformation, the empirical process vg (z) is transformed in the so called

uniform empirical process, i.e., WV\CAC‘;’\ T
/'7
N

How can we use u(t) to test Hy : F = G versus H; : F # G?7 We simply take functionals of it,
e.g.,

o Kolmogorov statistic: sup; |u(t)|
o Cramer von Mises statistic: [ |u(t)|?dt

o Anderson-Darling statistic: | [7%%

!2

These are just some possibilities among an entire family of test statistics and they are all
distribution free; that is, their distribution does not depend on the G that I am testing.
Distribution-freeness is an important property of a test statistic as it allows us to avoid a

case-by-case simulation/mathematical derivation.

o Why is it useful to have an entire family of test statistics?
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5 The multivariate case

Now suppose that X takes value in RP and suppose our G depends on a set of unknown
parameters @: The (multivariate parametric) empirical process

ve(x,8) = VN[Fy(z) — G(z, 0), ==(z1,...,zp) (5)

can still be used to test Hy : F'= G'versus Hy : F % (. In this case, however we can no longer
exploit the PIT so we lose distribution-freeness. That is because, in this case,

T = G(z, 8) + Unif[0,1]

where 8 is an estimator (e.g., the MLE) of 8. Nonetheless, we can still construct an entire family

of test statistics which extend those we have seen for the univariate case, e.g.,
- Kolmogorov’s statistic: sup, |vg(z, §)[
« Cramer von Mises statistic: [ |vg(z,0)[2dG(z, 0)

e (m7/9\)

2
—| dG(z, )
G(=)[1-G(=.0)]

o Anderson-Darling statistic: [ }

and we can simulate their distribution via the parametric bootstrap.
There are ways to recover distribution-free and even make the simulation faster but these

would required an entire new lecture. A suitable reference is

Algeri, 2022. K-2 rotated goodness-of-fit for multivariate data. Physical Review D.
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.035030.

You may watch a seminar on this at https://indico.cern.ch/event/1130770/ (starting from
minute 46:00 of the recording).
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