Time-resolved non-linear spectroscopy at FEL sources

G. Batignani, C. Ferrante, G. Fumero, T. Scopigno

Università Roma “Sapienza” - Dipartimento di Fisica
Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia
Outline

• Ultrafast time-resolved Raman in the visible regime
 • Frequency domain (FSRS) vs Time domain (IVS): molecular movies of heme proteins and structural rearrangements induced by photo-carriers in hybrid perovskites.

• Nonlinear optics in the soft X-Ray regime
 • Manipulating the spectral properties of soft X-ray pulses.

• X-rays perspectives
Making molecular movies using light flashes: the pump-probe scheme

\[\Delta t \leq 10^{-12} \text{ s} \]
\[\Delta x \leq 10^{-10} \text{ m} \]
#1: Time Resolved Diffraction
#2: Time Resolved Raman
Raman for pedestrians

Inelastic light scattering

\[P(t) = \alpha(t)E(t) \]
(spontaneous) time resolved Raman for pedestrians

Inelastic light scattering

\[P(t) = \alpha(t)E(t) \]
Transient spontaneous Raman spectroscopy

Raman Spectrum: Structural Sensitivity

Pulsed Raman excitation (FT limited)

Fourier Transform Limit: $\delta \omega \delta t \geq 15 \text{ ps cm}^{-1}$
Two Approaches

FSRS: Femtosecond Stimulated Raman Spectroscopy (frequency-domain Raman)

IVS: Impulsive Vibrational Spectroscopy (time-domain Raman)

FSRS-Probe

IVS-Probe

Photo-reaction coordinate(s)
Two Approaches

FSRS: Femtosecond Stimulated Raman Spectroscopy (frequency-domain Raman)

IVS: Impulsive Vibrational Spectroscopy (time-domain Raman)
FSRS in a nutshell:

\[\frac{d^2 Q}{dt^2} + 2\gamma \frac{dQ}{dt} + \omega_0^2 Q = \alpha_0' |\tilde{E}(\vec{r}, t)|^2 \]

\[\frac{\partial^2 E(z, t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E(z, t)}{\partial t^2} \approx \frac{4\pi}{c^2} N\alpha_0' \frac{\partial^2 (QE(z, t))}{\partial t^2} \]
FSRS in a nutshell:

Combining spectral and temporal resolution

“Reaction” coordinate

Energy

Timeline
How it works: the Heme-proteins case

O₂ transport, storage and sensing. Intracellular trafficking, oxygen sensing, NO synthesis and regulation, oxidative metabolism, apoptosis and regulation of DNA expression.

Function \leftrightarrow bond breaking and recombination
FSRS at work: sub-ps in Mb

 Mb deOxy

Mb CO

\(\Delta t = 0.25 \text{ ps} \)

\(\Delta t = 0 \text{ ps} \)

\(\Delta t = 30 \text{ ps} \)

\(\Delta t = 5.0 \text{ ps} \)

\(\Delta t = 3.0 \text{ ps} \)

\(\Delta t = 1.5 \text{ ps} \)

\(\Delta t = 0.40 \text{ ps} \)

\(\Delta t = 0.30 \text{ ps} \)

\(\Delta t = -10 \text{ ps} \)

\(\tau_\sim = 0.29 \text{ ps} \)

\(\tau_\sim = 5.2 \text{ ps} \)

Analysis of the \(\nu_4 \) Mb deOxy MbCO

Transient spontaneous Raman spectroscopy
Two Approaches

FSRS: Femtosecond Stimulated Raman Spectroscopy (frequency-domain Raman)

IVS: Impulsive Vibrational Spectroscopy (time-domain Raman)
Two femtosecond pulses are exploited for measuring the vibrational spectrum.

The coherently stimulated third-order polarization oscillates in T and modulates the transmitted probe pulse.
IVS in a nutshell:

- Two femtosecond pulses are exploited for measuring the vibrational spectrum.
- The coherently stimulated third-order polarization oscillates in ΔT and modulates the transmitted probe pulse.

Raman features can be extracted by Fast Fourier Transforming (FFT).
Two femtosecond pulses are exploited for measuring the vibrational spectrum.

The coherently stimulated third-order polarization oscillates in T and modulates the transmitted probe pulse.
IVS in a nutshell:

- Two femtosecond pulses are exploited for measuring the vibrational spectrum.
- The coherently stimulated third-order polarization oscillates in T and modulates the transmitted probe pulse.
Two Approaches

FSRS: Femtosecond Stimulated Raman Spectroscopy (frequency-domain Raman)

IVS: Impulsive Vibrational Spectroscopy (time-domain Raman)

Key ingredients: Ultrashort pulses, with large spectral tunability.
Non-linear spectroscopy at FEL sources

Controlling the spectral properties of X-Ray pulses would provide novel opportunities for non-linear photonics and time-resolved spectroscopy at FEL facilities.

At visible wavelengths self-phase modulation (SPM) represents one of the primary tools used for tuning the spectral bandwidth by Kerr effect in transparent media.

Idea: studying similar nonlinear effects, but in the X-Ray regime, at EIS-TIMEX of the FERMI FEL in Trieste

Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Spectral modification as a function of pulse fluence and energy

Strong dependence on the interaction process between light and core electrons

Studying similar nonlinear effects, but in the X-Ray regime, at EIS-TIMEX of the FERMI FEL in Trieste

Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Above abs. edge:

- The dispersive lineshapes in the differential spectra indicate a pronounced blue-shift: SPM effect induced by photo-induced core electron ionization.

Core photoelectrons are promoted nearly above the Fermi level, generating a transient hot dense ionized plasma.
Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Above abs. edge:

- The dispersive lineshapes in the differential spectra indicate a pronounced blue-shift: SPM effect induced by photo-induced core electron ionization.

 Core photoelectrons are promoted nearly above the Fermi level, generating a transient hot dense ionized plasma.

 The trailing part of the pulse experiences a reduced refractive index and is hence accelerated: this results in a spectral blue-shift.
Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Above abs. edge:

- The dispersive lineshapes in the differential spectra indicate a pronounced blue-shift: SPM effect induced by photo-induced core electron ionization.

Core photoelectrons are promoted nearly above the Fermi level, generating a transient hot dense ionized plasma.

The trailing part of the pulse experiences a reduced refractive index and is hence accelerated: this results in a spectral blue-shift.
Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Spectral modification as a function of pulse fluence and energy

Strong dependence on the interaction process between light and core electrons

Studying similar nonlinear effects, but in the X-Ray regime, at EIS-TIMEX of the FERMI FEL in Trieste
Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Spectral modification as a function of pulse fluence and energy

Strong dependence on the interaction process between light and core electrons

\[E(r, t) = \Re \{ \psi(r, t) e^{ik_0z - i\omega_0 t} \hat{n} \} \]

SPM induced phase

\[\phi_{\text{NL}}(r, t) = \chi^{(3)} |\psi(r, t)|^2 k_0 L \]

Delayed thermal response of electrons (DTRE)

\[\phi_{\text{DTRE}}(r, t) = \int dt' h(t') |\psi(r, t - t')|^2 k_0 L \]

SPM alone does not account for the red-shift at low fluences
Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Spectral modification as a function of pulse fluence and energy

Strong dependence on the interaction process between light and core electrons

\[E(r, t) = \text{Re}[\psi(r, t)e^{ik_0z - i\omega_0 t \hat{n}}] \]

SPM + DTRE

\[\phi_{\text{NL}}(r, t) = \chi^{(3)}|\psi(r, t)|^2 k_0 L \]
\[\phi_{\text{DTRE}}(r, t) = \int dt' h(t')|\psi(r, t - t')|^2 k_0 L \]
Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Spectral modification as a function of pulse fluence and energy:
- Blue shift for above edge interaction,
- Red shift for below edge interaction at low fluences
- Spectral broadening for below edge interaction at high fluences

Demonstrated self-induced spectral beam modification by interaction with sub-micrometric foils of selected monoatomic materials in the EUV
Time-Resolved nonlinear Raman Spectroscopy: X ray perspectives...
#1: FSRS with X ray pump

Capturing structural evolution during photofragmentation
#2: IVS with X ray probe

Motivation:

The key iron-histidine mode is very weak in the Soret Resonant Raman spectrum.
#2: FSRS with X ray probe

Generate **ground state** coherences with VIS, reaction pathway resonantly probed with X-rays

The congested FSRS spectrum cannot uniquely identify the reaction pathway

Sharpening Raman resonance at the atomic level: Carbon motions in Rhodopsin