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Time-resolved non-linear 
spectroscopy at FEL sources



• Nonlinear optics in the soft X-Ray regime 

• Ultrafast time-resolved Raman in the visible regime

Outline

• Frequency domain (FSRS) vs 
Time domain (IVS): molecular 
movies of heme proteins and 
structural rearrangements induced 
by photo-carriers in hybrid 
perovskites.

• X-rays perspectives

• Manipulating the spectral properties of 
soft X-ray pulses.



Δt ≤ 10-12 s

Δx ≤ 10-10 m

Making molecular movies using light flashes: the 
pump-probe scheme



#1: Time Resolved Diffraction



#2: Time Resolved Raman
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Raman Spectrum: 
Structural Sensitivity

CW

Transient spontaneous Raman spectroscopy

Fourier Transform Limit: δω δt ≥ 15 ps cm-1

Pulsed Raman excitation (FT limited)
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How it works: the Heme-proteins case

Heme

Amino acids

Ligand 

(O2, CO, NO)

Iron

O2 transport, storage and sensing. Intracellular 
trafficking, oxygen sensing, NO synthesis and 
regulation, oxidative metabolism, apoptosis 

and regulation of DNA expression.

Function → bond breaking and recombination
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Transient 
spontaneous 

Raman 
spectroscopy
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IVS in a nutshell:

Probe pulse

Delay line

Raman pulse

o Two femtosecond pulses are
exploited for measuring the
vibrational spectrum

o The coherently stimulated
third-order polarization
oscillates in T and modulates
the transmitted probe pulse.



IVS in a nutshell:

Probe pulse

Delay line

Raman pulse

o Two femtosecond pulses are
exploited for measuring the
vibrational spectrum

o The coherently stimulated
third-order polarization
oscillates in T and modulates
the transmitted probe pulse.

FFT

Raman features can be 
extracted by Fast Fourier 

Transforming



IVS in a nutshell:

Probe pulse

Delay line

Raman pulse

• Broad pump 
bandwidth

Normal mode 
coordinate

E
n

er
g

y

o Two femtosecond pulses are
exploited for measuring the
vibrational spectrum

o The coherently stimulated
third-order polarization
oscillates in T and modulates
the transmitted probe pulse.



IVS in a nutshell:

Probe pulse

Delay line

Raman pulse

• Broad pump 
bandwidth
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o Two femtosecond pulses are
exploited for measuring the
vibrational spectrum

o The coherently stimulated
third-order polarization
oscillates in T and modulates
the transmitted probe pulse.

• Pump 
duration 
shorter than 
vibrational 
periods

t



ω

FSRS: Femtosecond
Stimulated Raman 

Spectroscopy (frequency-
domain Raman)

T

AP

NRP

T

Photo-
reaction 

coordinate(s)

Actinic
Pump

Q Q

S0

Sn

Q

IVS-Probe

τ

TAP

τ

τ

FSRS-Probe

PP

PP

Two Approaches

IVS: Impulsive 
Vibrational Spectroscopy

(time-domain Raman)

Key ingredients: 
Ultrashort pulses, with 

large spectral tunability.
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Non-linear spectroscopy at FEL sources

Controlling the spectral properties of X-Ray pulses would 
provide novel opportunities for non-linear photonics and 

time-resolved spectroscopy at FEL facilities.

At visible wavelengths self-phase 
modulation (SPM) represents one of 
the primary tools used for tuning the 
spectral bandwidth by Kerr effect in 

transparent media.

pump

WLC

Idea: studying similar nonlinear 
effects, but in the X-Ray regime, at 
EIS-TIMEX of the FERMI FEL in 

Trieste

From: “Non-linear self-driven spectral tuning of Extreme Ultraviolet Femtosecond Pulses in monoatomic 
materials’’ by C. Ferrante et al., Light: Science & Applications (2021) 10:92



Non-linear spectroscopy at FEL sources

Studying similar nonlinear effects, 
but in the X-Ray regime, at EIS-

TIMEX of the FERMI FEL in Trieste

Experimental results on Mg samples

Spectral modification 
as a function of pulse 
fluence and energy

Strong dependence on 
the interaction process 
between light and core 

electrons

From: “Non-linear self-driven spectral tuning of Extreme Ultraviolet Femtosecond Pulses in monoatomic 
materials’’ by C. Ferrante et al., Light: Science & Applications (2021) 10:92



Non-linear spectroscopy at FEL sources
Experimental results on Mg samples

Above abs. edge:

• The dispersive lineshapes in the 
differential spectra indicate a pronounced 
blue-shift: SPM effect induced by photo-
induced core electron ionization.

Core photoelectrons are 
promoted nearly above the Fermi 
level, generating a transient hot 

dense ionized plasma
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Non-linear spectroscopy at FEL sources
Experimental results on Mg samples

Spectral modification 
as a function of pulse 
fluence and energy

Strong dependence on 
the interaction process 
between light and core 

electrons

SPM induced phase

Delayed thermal response 
of electrons (DTRE)

SPM alone does 
not account for 
the red-shift at 
low fluences



Non-linear spectroscopy at FEL sources
Experimental results on Mg samples

Spectral modification 
as a function of pulse 
fluence and energy

Strong dependence on 
the interaction process 
between light and core 

electrons

SPM +DTRE



Non-linear spectroscopy at FEL sources
Experimental results on Mg samples

Spectral modification 
as a function of pulse 
fluence and energy:

Blue shift for above 
edge interaction,

Red shift for below 
edge interaction at low 

fluences

Spectral broadening for 
below edge interaction 

at high fluences Demonstrated self-induced 
spectral beam modification by 

interaction with sub-micrometric 
foils of selected monoatomic 

materials in the EUV



Time-Resolved nonlinear 
Raman Spectroscopy:      
X ray perspectives…



#1: FSRS with X ray pump

Capturing structural 
evolution during 

photofragmentation 



#2: IVS with X ray probe

The key iron-histidine mode is very weak in the 
Soret Resonant Raman spectrum

Ngb-CO

Motivation:



#2: FSRS with X ray probe

Sharpening Raman 
resonance at the atomic 
level: Carbon motions in 

Rhodopsin

Generate ground state coherences with VIS, reaction 
pathway resonantly probed with X-rays

P. Kukura, D. W. McCamant et al. Science, 11; 310, 1006 (2005)

D. W. McCamant, J. Phys. Chem. B, Re-Evaluation of 
Rhodopsin’s Relaxation Kinetics (2011): 

S. Mukamel, J. Biggs, Comment on the effective temporal 
and spectral resolution of impulsive stimulated Raman 

signals, J. Chem. Phys. (2011) 

The congested FSRS 
spectrum cannot 

uniquely identify the 
reaction pathway
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