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Ultrafast time-resolved Raman in the visible regime

«  Frequency domain (FSRS) vs

Time domain (IVS): molecular
movies of heme proteins and
structural rearrangements induced
by photo-carriers in hybrid

perovskites.

Nonlinear optics in the soft X-Ray regime

«  Manipulating the spectral properties of
soft X-ray pulses.

X-rays perspectives




Making molecular movies using light flashes: the
pump-probe scheme
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#1: Time Resolved Diffraction




#2: Time Resolved Raman




(spontaneous) Raman for pEdEStrianS
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(spontaneous) time resolved Raman for PedeStrianS
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Transient spontaneous Raman spectroscopy
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Two Approaches
FSRS: Femtosecond
Stimulated Raman
Spectroscopy (frequency-
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Two Approaches
FSRS: Femtosecond
Stimulated Raman
Spectroscopy (frequency-
domain Raman)
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FSRS in a nutshell:
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Energy

FSRS in a nutshell:
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How it works: the Heme-proteins case

O, transport, storage and sensing. Intracellular
trafficking, oxygen sensing, NO synthesis and
regulation, oxidative metabolism, apoptosis

and regulation of DNA expression.

Ligand
(O, CO, NO)

Function €= bond breaking and recombination
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FSRS at work: sub-ps in Mb

Mbh deQOxv




IVS: Impulsive
Vibrational Spectroscopy
(time-domain Raman)
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IVSin a nutshell ' TR

Raman pulse
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the transmitted probe pulse.




IVSin a nutshell Ly

Raman pulse 640
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IVS in a nutshell:

Raman pulse
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o Two femtosecond pulses are 1 + Broad pump
exploited for measuring the bandwidth
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o The coherently stimulated
third-order polarization
oscillates in T and modulates

the transmitted probe pulse. Normal mode
coordinate




IVS in a nutshell:

Raman pulse

Delay line

o Two femtosecond pulses are
exploited for measuring the
vibrational spectrum

o The coherently stimulated
third-order polarization
oscillates in T and modulates
the transmitted probe pulse.

\ J"‘J J“J

Energy

Normal mode

coordinate

M

Broad pump
bandwidth

Pump
duration
shorter than
vibrational
periods




Two Approaches
FSRS: Femtosecond
Stimulated Raman Sh
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Non-linear spectroscopy at FEL sources

Controlling the spectral properties of X-Ray pulses would
provide novel opportunities for non-linear photonics and
time-resolved spectroscopy at FEL facilities.
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Idea: studying similar nonlinear O l
effects, but in the X-Ray regime, at |

EIS-TIMEX of the FERMI FEL in
Trieste
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From: “Non-linear self-driven spectral tuning of Extreme Ultraviolet Femtosecond Pulses in monoatomic
materials”’ by C. Ferrante et al., Light: Science & Applications (2021) 10:92




Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Above L, 3 abs. edge
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Spectral modification
as a function of pulse
fluence and energy

10%

0%

Strong dependence on

the interaction process

between light and core
electrons

-10%

-20%

Studying similar nonlinear effects, o= *
but in the X-Ray regime, at EIS- I
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From: “Non-linear self-driven spectral tuning of Extreme Ultraviolet Femtosecond Pulses in monoatomic
materials”’ by C. Ferrante et al., Light: Science & Applications (2021) 10:92
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Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Above L, 5 abs. edge ‘

Above abs. edge:
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blue-shift: SPM effect induced by photo-
induced core electron ionization.
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Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Above L, 5 abs. edge l
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The trailing part of
the pulse experiences
a reduced refractive
index and is hence
accelerated: this

results in a spectral
blue-shift




Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Above L, 5 abs. edge l
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Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Below L, 5 abs. edge

Spectral modification ~ ..|® _ [
as a function of pulse
fluence and energy

Strong dependence on
the interaction process
between light and core — 31uom

electrons e a2z

x-y stages la

Studying similar nonlinear effects, e
but in the X-Ray regime, at EIS- I
TIMEX of the FERMI FEL in Trieste

Above L2’3




Non-linear spectroscopy at FEL sources

Experimental results on Mg samples

Spectral modification
as a function of pulse
fluence and energy

Strong dependence on

the interaction process

between light and core
electrons
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Non-linear spectroscopy at FEL sources

Experimental results on Mg samples
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Non-linear spectroscopy at FEL sources ‘

Experimental results on Mg samples

Below L, 5 abs. edge Above L, 5 abs. edge

T T T
c T /\\ d 1 20%
(A}
i |".‘.
Il )
— Ilr.r
!

Spectral modification
as a function of pulse
fluence and energy:

: N
b —19Jem™| A

T |=——31Jem3|//

-1 10%

Blue shift for above
edge interaction, &

Red shift for below
edge interaction at low
fluences — 3t Jom?

! ! ! ! I
42 422 51.4 51.6 56.1 56.3

Spectral broadening for EsleV)
below edge interaction

at high fluences Demonstrated self-induced
spectral beam modification by
interaction with sub-micrometric
foils of selected monoatomic
materials in the EUV

0%

4 -10%

- -20%

4



Time-Resolved nonlinear
Raman Spectroscopy:
X ray perspectives...



#1: FSRS with X ray pump
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#2: IVS with X ray probe

Motivation:
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The key iron-histidine mode is very weak in the
Soret Resonant Raman spectrum



Stimulated Raman Intensity

800 1000 1200 1400 1600 1800
Raman Shift (em)

_ Energy (kJ/mol)

) L
& C,,=C,, Isomerization

Q\
H 1
Al H g
Sy GO
. " i

#2: FSRS with X ray probe

Generate ground state coherences with VIS, reaction

pathway resonantly probed with X-rays

P. Kukura, D. W. McCamant et al. Science, 11; 310, 1006 (2005)

D. W. McCamant, J. Phys. Chem. B, Re-Evaluation of
Rhodopsin’s Relaxation Kinetics (2011):

S. Mukamel, J. Biggs, Comment on the effective temporal
and spectral resolution of impulsive stimulated Raman
signals, J]. Chem. Phys. (2011)
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