arXiv:2108.12736 Quark condensate and chiral symmetry restoration in neutron stars

Hao-Miao Jin^{a,b}, Cheng-Jun Xia^{b,*}, Ting-Ting Sun^{a,*}, Guang-Xiong Peng^{c,d,e,*}

^aSchool of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
^bSchool of Information Science and Engineering, Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China
^cSchool of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
^dInstitute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, Beijing 100049, China

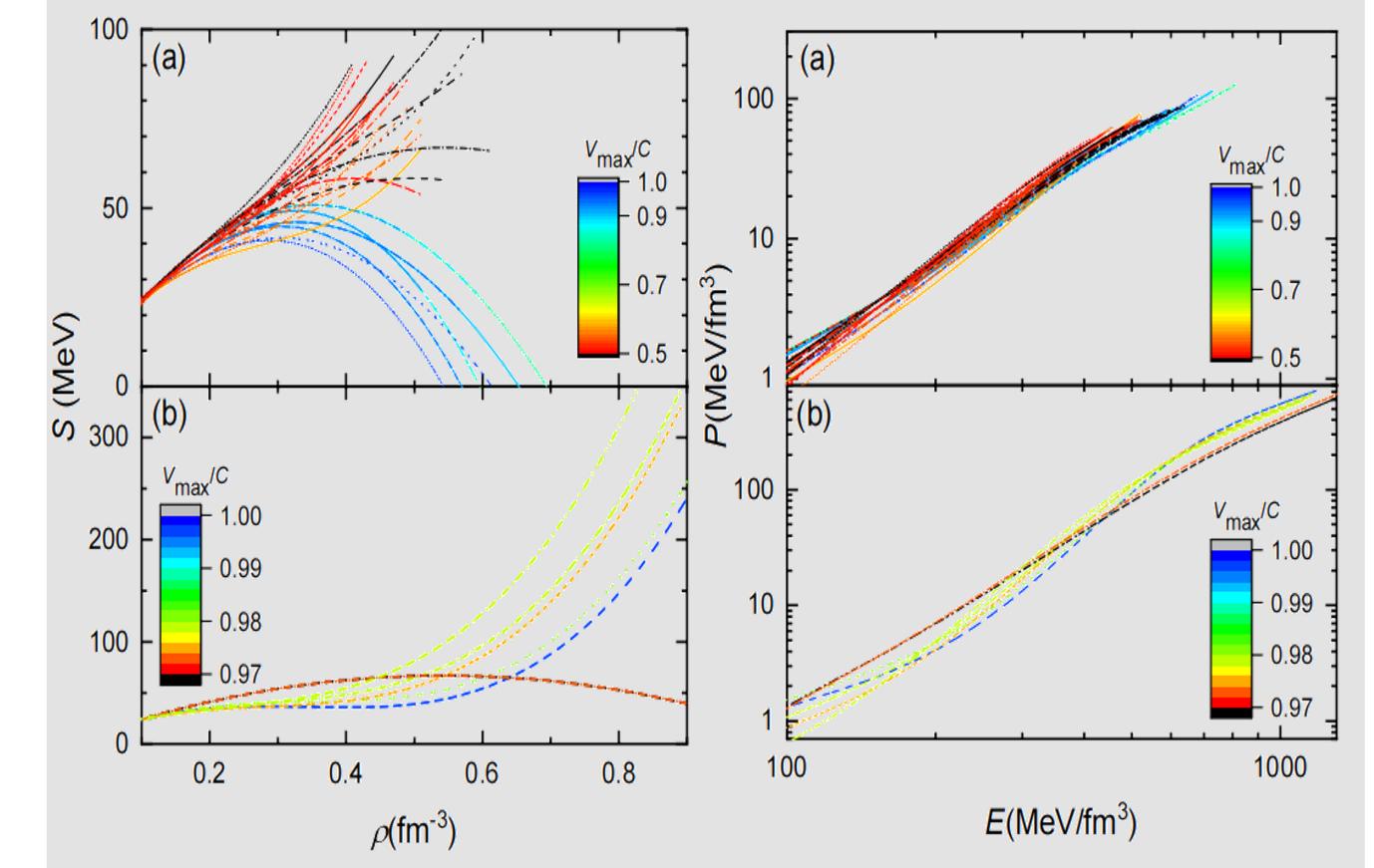
^eSynergetic Innovation Center for Quantum Effffects and Application, Hunan Normal University, Changsha 410081, China

Abstract

Based on an *equivparticle model*, we investigate the *inmedium quark condensate* in neutron stars. Carrying out a *Taylor expansion* of the nuclear binding energy to the order of ρ^3 , we obtain a series of *EOSs* for neutron star matter, which are confronted with the latest nuclear and astrophysical constraints. The in-medium quark condensate is then extracted from the constrained properties of neutron star matter, which decreases non-linearly with density. However, *the chiral symmetry* is only partially restored with non-vanishing quark condensates, which may *vanish* at a density that is *out of reach* of neutron stars.

Results

We consider two criteria: (a) The weaker constraints at $\rho \leq \rho_{1.4}$, the tidal deformability $\Lambda_{1.4} \leq 800$, radius $R_{1.4} = 12.45 \pm 1.30 \text{ km}$, and maximum mass $M_{\text{TOV}} < 2.05 M_{\odot}$. (b) The stronger constraints at $\rho \leq \rho_{\text{TOV}}$, the tidal deformability $70 \leq \Lambda_{1.4} \leq 580$, the radii $R_{1.4} = 12.45 \pm 0.65 \text{ km}$ and $R_{2.08} = 12.35 \pm 0.75 \text{ km}$, and the maximum mass $M_{\text{TOV}} \geq 2.05 M_{\odot}$.



Conclusion

- I.The *symmetry energy* at large densities
are consistent with various constraints
from heavy-ion collisions [8], which
may even become *negative* at $\rho \gtrsim 3\rho_0$ if
the constraints are limited to $\rho < \rho_{1.4}$.
- II.This deviation reaches its peak at $\rho \approx$ $3\rho_0 \sim 5\rho_0$, which was interpreted as a*phase transition* from HM to QM[9].
- III. At largest densities $\rho \approx \rho_{TOV}$ the velocity of sound is still *large* and far from the conformal limit c/ $\sqrt{3}$, so that a full transformation into a *Fermi gas of quarks* is *unlikely*. IV. Throughout the density range of *neutron stars* ($\rho \le \rho_{TOV}$), the constrained *quark condensate* does *not vanish[10]*.

Introduction

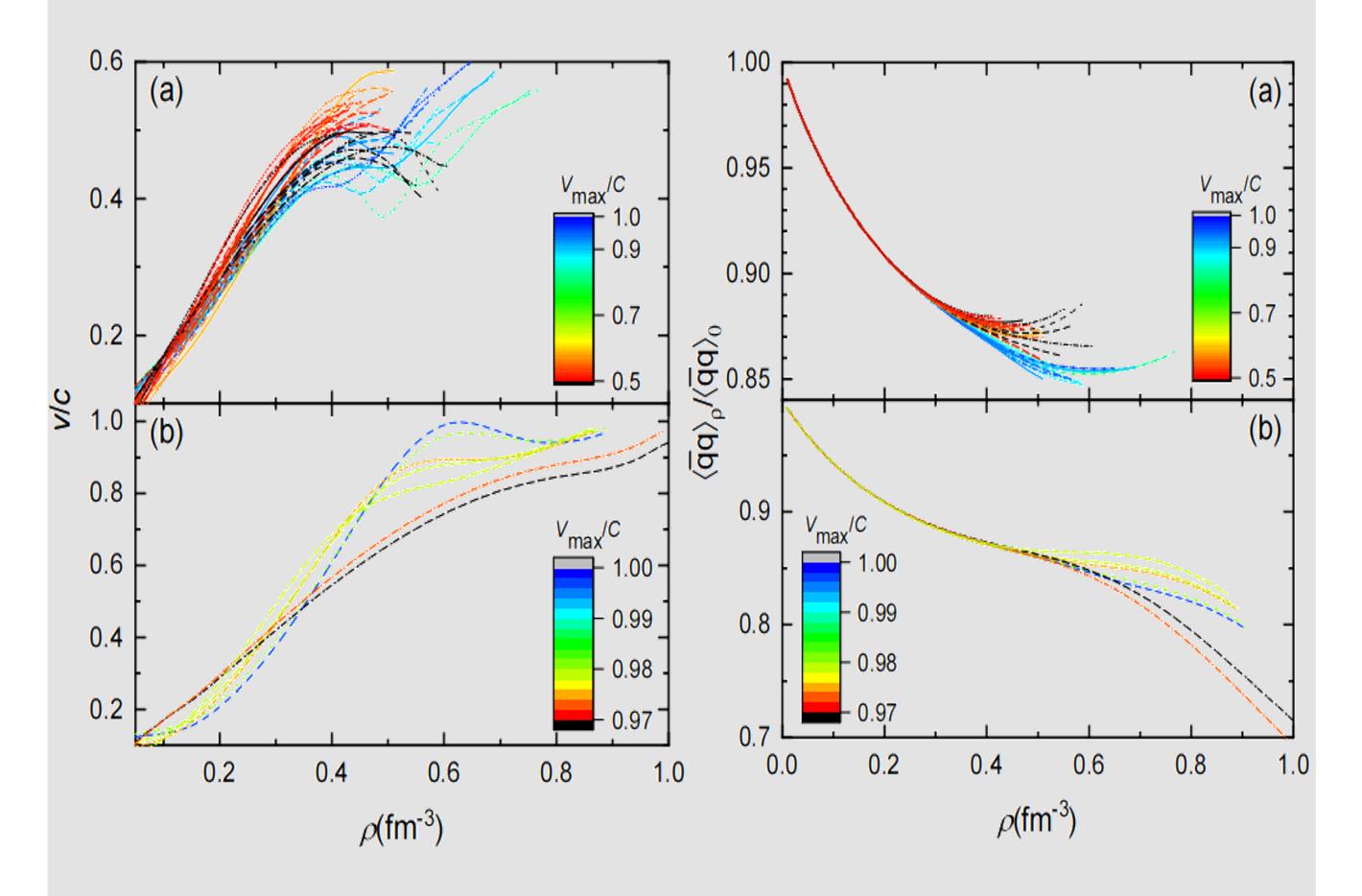
The *state* of matter at large densities, is still veiled in mystery due to the *difficulties* in lattice *QCD* simulations. It is thus essential for us to investigate the properties of dense matter with both nuclear and astrophysical constraints.

According to various investigations on the structures and reactions of finite nuclei, the *properties* of nuclear matter around the saturation density ρ_0 are well *constrained* with the binding energy, the incompressibility *K*[1], the symmetry energy *S* (ρ_0) and its slope *L*[2]. Meanwhile, the slope of symmetry energy was shown to be linearly correlated with the neutron skin thickness[3].

At *large enough densities*, it is expected that HM undergoes a deconfinement phase transition and forms quark matter (QM)[4]. Meanwhile, a smooth crossover from HM to QM can also accommodate the stringent constraints from pulsar observations,which is expected to be bridged by quarkyonic matter[5]. The *baryon density* changes very *rapidly* at the *quarkyonic transition*, and one may expect that the quarkyonic and *chiral phase transitions* are entangled. It is thus necessary to investigate the *in-medium quark condensate* inside *neutron stars*.

Methodology

Around ρ_0 , expanding the binding energy of *symmetric nuclear matter* (SNM) $\epsilon_0(\rho)$ and the *symmetry energy* $S(\rho)$ in Taylor series and omitting higher order terms $\epsilon_0(\rho) = \epsilon_0(\rho_0) + \frac{K}{18} \left(\frac{\rho}{\rho_0} - 1\right)^2 + \frac{J}{162} \left(\frac{\rho}{\rho_0} - 1\right)^3$ $S(\rho) = S(\rho_0) + \frac{L}{3} \left(\frac{\rho}{\rho_0} - 1\right) + \frac{K_{sym}}{18} \left(\frac{\rho}{\rho_0} - 1\right)^2 + \frac{J_{sym}}{162} \left(\frac{\rho}{\rho_0} - 1\right)^3$ The coefficients are the income-pressibility K and skewness J of SNM, while those of symmetry energy are the slope L, curvature K_{sym} , and skewness J_{sym} . Here we adopt an *equivparticle model* to extract the quark condensate of neutron star matter *[6,7]*. The basic idea of equivparticle model is to define an equivalent Hamiltonian density with a *variable quark mass*. To calculate the *quark condensate*, we obtain Figure 1: The symmetry energy S as functions of density ρ.



References

[1]S. Shlomo, V. M. Kolomietz, G. Col`o, Eur. Phys. J. A 30 (2006)23–30. [2]M. Oertel, M. Hempel, T. Kl["]ahn, S. Typel, Rev. Mod. Phys. 89(2017) 015007. [3]Z. Zhang, L.-W. Chen, Phys. Lett. B 726 (2013) 234 - 238.[4]E. Annala, T. Gorda, A. Kurkela, J. N¨attil¨a, A. Vuorinen, Nat.Phys. 16 (2020) 907. [5]G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, H. Togashi, Astrophys. J. 885 (2019) 42. [6]G. X. Peng, H. C. Chiang, J. J. Yang, L. Li, B. Liu, Phys. Rev.C 61 (1999) 015201. [7]C. J. Xia, G. X. Peng, S. W. Chen, Z. Y. Lu, J. F. Xu, Phys. Rev.D 89 (2014) 105027. [8]Y. Liu, Y. Wang, Y. Cui, C.-J. Xia, Z. Li, Y. Chen, Q. Li, Y. Zhang, Phys. Rev. C 103 (2021) 014616 [9]C.-J. Xia, Z. Zhu, xia zhou, A. Li, Chin. Phys. C 45 (2021)055104. [10]T. Minamikawa, T. Kojo, M. Harada ar-Xiv:2107.14545 (2021).

 $\frac{\langle \bar{q}q \rangle_{\rho}}{\langle \bar{q}q \rangle_{0}} = 1 - \frac{1}{3n^{*}} \frac{E_{I}}{m_{I}}$ $n^{*} = -\frac{2}{3} \langle \bar{q}q \rangle_{0} = \frac{m_{\pi}^{2} f_{\pi}^{2}}{3m_{0}} = 0.985 \text{ fm}^{-3}$ The interacting part of the equivalent mass $m_{I} = \frac{E_{I}}{\sum_{i} (\langle \bar{q}_{i}q_{i} \rangle_{\rho} - \langle \bar{q}_{i}q_{i} \rangle_{0})}$

The interacting energy density

$$E_I = \langle H_I \rangle_{\rho} - \langle H_I \rangle$$

Figure 3:The velocity of sound v for neutron star matter obtained with the EOSs . Figure 5: Relative quark condensate of neutron star matter as functions of baryon number density.

Figure 2: The EOSs of neutron star

matter that meet the criteria (a)

and (b).

Acknowledgements

This work was supported by National SKA Program of China No. 2020SKA0120300, National Natural Science Foundation of China (Grant Nos. 11705163,12005005, 11947098, 11875052 & 11673002), NingboNatural Science Foundation (Grant Nos. 2019A610066& 2019A610092), and key research projects of universities in Henan province (Grant No. 20A140003).