NuSym21 - International Symposium on Nuclear Symmetry Energy Online Event, 22 September to 20 October 2021 Systematic analysis of nuclear reactions at intermediate energies with a neutron rich projectile on multiple targets Sahil Upadhyaya¹, Tomasz Kozik¹, Diego Gruyer², Katarzyna Mazurek³ ¹Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland ²Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France

³Institute of Nuclear Physics, Polish Academy of Science, PL-31342, Krakow, Poland

<u>NuSym21 - International Symposium on Nuclear Symmetry Energy Online Event, 22 September to 20 October 2021</u> Systematic analysis of nuclear reactions at intermediate energies with a neutron rich projectile on multiple targets Sahil Upadhyaya¹, Tomasz Kozik¹, Diego Gruyer², Katarzyna Mazurek³

¹Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland ²Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France ³Institute of Nuclear Physics, Polish Academy of Science, PL-31342, Krakow, Poland

THE FAZIA DETECTOR

- FAZIA (Forward-angle <u>A & Z Identification Array</u>) is a charged particle multi-detector with an excellent mass resolution of up to Z~25 [1].
- Basic detection module of FAZIA is called a FAZIA Block [2,3].
- Block consists of 16 detection telescopes, each made of two Si layers (300 μm and 500 μm) and one CsI scintillator (10 cm) [4].
- Two telescopes connected to one front-end electronics (FEE) card each total 8 FEE cards.
- Block card for output to data acquisition system and input for power supply.
- Mass resolution helps to calculate the N/Z of detected fragments up to Z~20 can be calculated.

THE FAZIA-PRE EXPERIMENT

- The FAZIA-PRE experiment was performed in February 2018 at the Laboratori Nazionali del Sud (LNS-INFN), Catania, Italy with 6 FAZIA blocks.
- The detector setup had an angular acceptance of $\theta = 2^{\circ}-8^{\circ} \& 12^{\circ}-18^{\circ}$.
- Aiming to investigate the effects of pre-equilibrium neutron emissions from a neutron rich projectile, on N/Z of fragments, mostly coming from excited quasi-projectiles (QP) from semiperipheral collisions.

	Projectile		2			
	$E_B ~[MeV/A]$	25			40	
	$\mathrm{v}_B~\mathrm{[cm/ns]}$	6.81			8.51	
Table 1	Target	$^{12}_6\mathrm{C}$	$^{27}_{13}\mathrm{Al}$	$^{40}_{20}\mathrm{Ca}$	$^{12}_6\mathrm{C}$	$^{27}_{13}\mathrm{Al}$
	$t \; [\mu { m g/cm^2}]$	239	216	500	239	216
	${ m v}_{CM}~[{ m cm/ns}]$	5.48	4.4	3.76	6.87	5.53
	\mathcal{E}^{av}_{CM} [MeV/A]	3.99	5.74	6.18	6.38	9.17
	$\overline{ heta}_{gr}$	0.89°	1.81°	2.69°	0.55°	1.12°

- Table 1: Experimental details of FAZIA-PRE experiment: beam energy (E_B) , beam velocity (v_B) , target thickness (t), centre-of-mass velocity (v_{CM}) , available energy in CM (E_{CM}^{av}) & grazing angle (θ_{or})
- Table 2: N/Z of individual nuclei present in the experiment.
- Table 3: N/Z of each reaction system in the experiment.

Nucleus	N/Z	
⁴⁸ Ca	1.4	4
$^{12}\mathrm{C}$	1.0	4
²⁷ Al	1.07	45
^{40}Ca	1.0	
Table	2	

System	N/Z total
$^{48}\mathrm{Ca}+^{12}\mathrm{C}$	1.31
$^{48}\mathrm{Ca}+^{27}\mathrm{Al}$	1.27
$^{48}\mathrm{Ca}+^{40}\mathrm{Ca}$	1.2
Table	3

THE FAZIA-PRE EXPERIMENT

- Charge (Z) and longitudinal velocity (v_{\parallel}) correlation show the detection of mostly QP fragments near beam velocities $v_{\rm B}$ (black dotted lines) corresponding to the beam energies. The centre-of-mass velocities $v_{\rm CM}$ (red dotted lines) are also marked.
- The isotopic resolution of FAZIA up to Z~20 is sufficient to study full range of fragments in this experiment as the projectile is at Z=20 (⁴⁸₂₀Ca).

DATA ANALYSIS

- N distribution plotted using N=A-Z, to obtain the $\langle N \rangle$ for each Z (= 3 20) for all systems from FAZIA-PRE data.
- The relative yield of neutrons increases with increasing target mass: more dissipative collisions with increasing target mass.
- Systems at 40 MeV/A have higher relative yield than systems at 25 MeV/A up to Z~16 and lesser for Z>16, as one approaches projectile Z (here, = 20): increased multi-fragmentation at higher beam energy.
- For Z ≤ 6, relative yield of ²⁷Al target systems is the least at both beam energies due to its lowest proton and neutron separation energies [5]. Light fragments escape in all directions before reaching the detector placed at very forward angles.
- For Z=20, the relative yield is highest for all systems at N=28, pointing towards an abundance of projectile-like fragments (PLFs).

DATA ANALYSIS

- $\langle N \rangle / Z$ plotted as a function of Z w.r.t. target mass for both beam energies. The range of fragment $\langle N \rangle / Z$ stays between that of projectile and target.
- The fragment $\langle N \rangle / Z$ observed to be decreasing with increasing target mass: with increasing target mass, more dissipative collisions lead to higher rate of isospin equilibration, decreasing the fragment $\langle N \rangle / Z$.

• For beam energy dependence, the difference between fragment $\langle N \rangle / Z$ from 25 and 40 MeV/A systems was taken:

$$\delta \langle N \rangle / Z = \langle N \rangle / Z_{25} - \langle N \rangle / Z_{40}$$

- Expected → the interaction time and nucleon exchange between the participants reduces with increasing beam energy. Thus, an N-rich projectile should produce fragments with relatively higher ⟨N⟩/Z at higher beam energy because of detection of mostly QP region.
- Observed \rightarrow the $\delta\langle N \rangle/Z$ is positive for almost all Z: the fragment $\langle N \rangle/Z$ decreases with increasing beam energy.
- Explanation → pre-equilibrium neutron emission increases with beam energy [6], thus decreasing overall N/Z of the system and consequently the fragment ⟨N⟩/Z.

SUMMARY & CONCLUSION

- FAZIA is a charged particle multi-detector with an excellent mass resolution of up to Z~25.
- FAZIA-PRE experiment was performed at LNS-INFN, Catania in Feb 2018 aiming to investigate effects of pre-equilibrium neutron emissions from a neutron rich projectile, on N/Z of fragments.
- ⁴⁸Ca projectile was bombarded on ¹²C, ²⁷Al and ⁴⁰Ca targets at 25 MeV/A and on ¹²C and ²⁷Al targets at 40 MeV/A.
- The data obtained mostly had QP fragments due to very forward angles ($\theta = 2^{\circ}-8^{\circ} \& 12^{\circ}-18^{\circ}$) of the detector setup.
- A full range of N distributions for Z=3-20 was obtained for all reaction systems as the projectile Z was within the particle identification capability of FAZIA.
- The fragment $\langle N \rangle / Z$ was investigated w.r.t. target mass and beam energy.
- The fragment $\langle N \rangle / Z$ was found to be decreasing with increasing target mass.
- The fragment $\langle N \rangle / Z$ was found to be decreasing with increasing beam energy.

The FAZIA Collaboration

References

[1] R. Bougalt et al., Eur. Phys. J. A 50 47 (2014)

[2] F. Salomon et al., 2016 *JINST* **11** C01064

[3] S.Valdré et al., *Nucl. Instrum. Methods A* **930** 27 (2019)

[4] S. Upadhyaya, Acta Phys. Pol. B 51 399 (2020)

[5] M. Wang et al., *CPC (HEP & NP)* (2012) **36** (12): 1603–2014

[6] L. Lassen et al., Phys. Rev. C 55 1900 (1997)

THANK YOU !