

Multi-physics constraints at different densities to probe nuclear symmetry energy* (Suprovo Ghosh^{1a}, Debarati Chatterjee¹ and Jürgen Schaffner-Bielich²) ¹ Inter-University Centre for Astronomy and Astrophysics, Pune- India, ² Institut für Theoretische Physik, Frankfurt - Germany CONSTRAINTS AT DIFFERENT DENSITY REGIONS (Intermediate density) (Low density) (High density) (HIC experiments) (Astrophysical constraints) (CEFT) (Highest observed pulsar mass and tidal (KaOS, FOPI, ASY-EOS) deformability from NS merger event GW170817) Posteriors Posteriors Posterior ASY-EOS Constraint χ EFT Band HIC experiments $(n_b/n_0 \sim 1 - 3)$ Posteriors FOPI Constraint Multi-messenger observations 1.71.8 1.91.5CONCLUSION CORRELATION WITH SYMMETRY ENERGY AND ITS SLOPE Parameter space of the applied RMF model is No physical solutions for the neutron matter EoS • Posterior after χEFT filter with simultaneously small slope of symmetry energy constrained using CEFT, and small effective mass compatible with the Chiral EFT results due to the Hugenholtz-van Hove theorem.

	_			_	ster d
${n_0 \over (fm^{-3})}$	E_{sat} (MeV)	K_{sat} (MeV)	E_{sym} (MeV)	L_{sym} (MeV)	m^*/m
0.14 - 0.17	-16 ± 0.2	200 - 300	28 - 34	40 - 70	0.55 - 0.75

* https://arxiv.org/abs/2107.09371

Strong correlation between symmetry energy and its slope at saturation density but they are weakened after applying the HIC	The nuclear saturation density has good correlation with the effective mass and the astrophysical observables.												
filters.	n ₀	1	0	0.26	0.3	0.44	0.61	0.79	0.64	0.4	0.25	>	-1.0
	E_{sat}	0	1	0.06	0.15	0.03	0.07	0.03	0.05	0.06	0.07		-0.8
Radius of 1.4	K_{sat}	0.26	0.06	1	0.07	0.28	0.39	0.33	0.29	0.06	0.04		
solar mass neutron star has low	E_{sym}	0.3	0.15	0.07	1	.36	0.04	0.3	0.35	0.3	0.29		
correlation with slope of symmetry	L_{sym}	0.44	0.03	0.28	0.36	1	0.48	0.36	0.17	0.01	0.14		-0.6
energy but high	m^*/m	0.61	0.07	0.39	0.04	0.48	1	0.08	0.14	0.45	0.6		
correlation with effective mass.	$R_{1.4M_{\odot}}$	0.79	0.03	0.33	0.3	0.36	0.08	1	0.97	0.84	0.73		-0.4
	$\Lambda_{1.4M_{\odot}}$	0.64	0.05	0.29	0.35	0.17	0.14	0.97	1	0.94	0.87		
High correlation	$R_{2M_{\odot}}$	0.4	0.06	0.06	0.3	0.01	0.45	0.84	0.94	1	0.98		-0.2
between the astrophysical	$\Lambda_{2M_{\odot}}$	0.25	0.07	0.04	0.29	0.14	0.6	0.7).87	0.98	1		
observables.		n_0	E_{sat}	K_{sat}	E_{sym}	L_{sym}	m / m	$R_{1.4M}$	$\Lambda_{1.4M_{\odot}}$	$R_{2M_{\odot}}$	$\Lambda_{2M_{\odot}}$		-0.0

HIC experiments and multi-messenger astrophysical observations.

- Strong correlation between symmetry energy and its slope, which is weakened by HIC filters.
- Weak correlation of slope of symmetry energy with radius of 1.4 solar mass neutron stars.
- Most important nuclear parameters to consider for astrophysical data are the effective nucleon mass and the nuclear saturation density.