## v-A Interactions

### **Ulrich Mosel**



Institut für Theoretische Physik



### **Neutrino-nucleon cross section**



## **Charged and Neutral Currents**



### Both processes favor interactions on neutrons:

- CCQE : charge conservation
- NCQE weak charge
  - neutron : Q<sub>weak</sub> = 1
  - proton :  $1 4 \sin^2 \theta_W$ , Weinberg angle ~ 0.25 ->  $Q_{weak}$  ~ 0
- Electron scattering favors interaction with protons





### **Neutrino Oscillations**

### 2-Flavor Oscillation:

$$P(
u_{\mu} 
ightarrow 
u_{e}) = \sin^{2} 2\theta \sin^{2} \left( \frac{\Delta m^{2} L}{4E_{\nu}} \right)$$

Know: distance *L*, need energy  $E_{\nu}$ to determine mass difference  $\Delta m^2$ , mixing angle  $\theta$ 

Even more interesting: 3-Flavor Oscillation allows for CP violating phase  $\delta_{CP} \rightarrow$  matter/antimatter puzzle, order of neutrino masses







# DUNE (Flagship of US HEP)



#### Also NovA experiment starts at Fermilab, ~ 800 km beam length

NuSym 10/2021



Institut für Theoretische Physik



### **T2K Neutrino Beam**



NuSym 10/2021



Institut für Theoretische Physik



# **Oscillation Signals as f(E\_v)**



From: Diwan et al, Ann. Rev. Nucl. Part. Sci 66 (2016)

USTUS-LIEBIG-

UNIVERSITÄ

DUNE, 1300 kmHyperK (T2K) 295 kmEnergies have to be known within 100 MeV (DUNE) or 50 MeV (T2K)Ratios of event rates to about 10%NuSym 10/2021

### Neutrino Beam Energy

#### **PROBLEM:**

Neutrinos are produced as secondary decay products of high-energy pA collisions, x-sections from hadron production experiments such as NA61/SHINE or HARP

→ They have broad energy distributions
 Difference to any other high-energy and nuclear physics experiment!
 LHC: △E / E ~ 0.1 %







## **Problem: Neutrino Energy**

The incoming neutrino energy on the abscissa of all such oscillation plots is not known, but must be reconstructed; very different from Nuclear Physics and High Energy Physics where the beam energy is accurately known.

The reconstruction has to start from an only partially observed final state (detector limitations!) and proceeds from there ,backwards' to the initial state -> Need transport





## **Energy Reconstruction**

- Oscillation analysis requires neutrino energy
   Energy reconstruction
  - I. Calorimetric: measures energy of all outgoing particles, needs simulation of thresholds and non-measured events
  - 2. Kinematical: through QE, needs event identification







## **Energy Reconstruction by QE**

In QE scattering on nucleon at rest, only p + l, no  $\pi$  outgoing lepton determines neutrino energy



$$E_{\nu} = \frac{2M_{N}E_{\mu} - m_{\mu}^{2}}{2(M_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Trouble: all presently running exps use nuclear targets: C, O, <sup>40</sup>Ar
 Nucleons are Fermi-moving

2. Final state interactions may hinder correct event identification

NuSym 10/2021



itut für oretische Physik



# Final State Interactions in Nuclear Targets



Complication to identify QE, always entangled with  $\pi$  production

### Need Transport to sort out processes

A wake-up call for the high-energy physics community:



Low-Energy Nuclear Physics determines response of nuclei to neutrinos



Institut für Theoretische Physik, JLU Giessen

Gibuu

The Giessen Boltzmann-Uehling-Uhlenbeck Project

- GiBUU : Quantum-Kinetic Theory and Event Generator based on a BM solution of Kadanoff-Baym equations, allows for off-shell propagation
- GiBUU propagates phase-space distributions, not particles
- Physics content and details of implementation in: Buss et al, Phys. Rept. 512 (2012) 1-124
- Code from gibuu.hepforge.org, new version GiBUU 2021 add. details in Gallmeister et al, Phys.Rev. C94 (2016) no.3, 035502





### • **GIBUU** describes: (within the same unified theory and code)

- heavy ion reactions, particle production and flow
- pion and proton induced reactions on nuclei
- photon and electron induced reactions on nuclei
- neutrino induced reactions on nuclei using the same physics input! And the same code!
   NO TUNING!





### Effects of off-shell transport on particle production





Off-shell effects affect both absolute X-sections and spectra, because effective threshold are affected.

From: Effenberger, Mosel, Phys. Rev. C60 (1999) 051901

Collisional broadening of nucleons => short range correlations





## **GiBUU Results: Electrons**

#### **Inclusive X-sections**



Mosel, Gallmeister: Phys. Rev. C 99 (2019) 6, 064605

Target: Ti48, E = 2.222 GeV, 15.541 deg

Z-scaling of X-sections

#### Data are sensitive to proton momentum distributions





### **GiBUU Results: Neutrinos**

#### 1.5 $0.800 < \cos(\theta) < 0.850$ 1 0.5 ................. 0 0.5 1.5 2 0 $\textbf{p}_{\mu} \left( \text{GeV} \right)$

Mosel, Gallmeister: Phys. Rev. C 97 (2018) 4, 045501

#### T2K: 0-pion (CCQE-like) on H2O target



#### Mosel, Gallmeister: Phys. Rev. C 96 (2017) 1, 015503

#### T2K: pion production on CH target





### **Coherent Neutrino Scattering**

$$\frac{d\sigma}{dE} \sim \frac{G_F^2 \cdot M}{2\pi} \cdot \frac{Q_W^2}{4} \cdot F^2(Q) \cdot \left(2 - \frac{M \cdot E}{E_\nu^2}\right)$$

$$\sigma \propto Q_W^2 \propto (N - (1 - 4 \cdot \sin^2 \theta_W) Z)^2 \quad \sin^2 \theta_W \ ^\sim 1/4 \twoheadrightarrow \ \sigma \propto N^2.$$

CEvNS Experiment: Neutrinos from decay of pions at rest ~ 30 MeV



F<sup>2</sup>(Q) contains info on neutron distribution (PREX measures only at Momentum transfer)



T.M. Undaguita, lecture notes, 2021



### **Coherent Neutrino Scattering**



Coherent errors are only experimental, no model dependence

> Other experiments running: TEXONO: reactor in Taiwan CONNIE: reactor in Brazil CONUS: reactor in Germany

Other experiments planned: MINER in Texas, US NUCLEUS at reactor Chooz, France Ricochet at ILL, France

NuSym 10/2021

RED at reactor, Russia



Institut für Theoretische Physik



## Summary

- Extraction of fundamental neutrino properties (masses, CP violating phase, mass ordering) from long-baseline experiments requires an incoming-energy reconstruction
- Energy reconstruction requires a quantitatively reliable description of final state interactions 

  state-of-the-art transport is needed
- Combination of electron and neutrino experiments gives info on proton vs neutron distributions in nuclei





